GUILHERME GUIDOLIN DE CAMPOS

RESOLUCAO DE UM PROBLEMA DE ABASTECIMENTO COM AUXILIO DE
META-HEURISTICAS E COMPUTACAO PARALELA

Trabalho de Formatura apresentado a
Escola Politécnica da Universidade de
Séao Paulo para a obtencéo do Diploma

de Engenheiro de Produgéao

Sao Paulo
2004

GUILHERME GUIDOLIN DE CAMPOS

RESOLUCAO DE UM PROBLEMA DE ABASTECIMENTO COM AUXILIO DE
META-HEURISTICAS E COMPUTACAO PARALELA

Trabalho de Formatura apresentado a
Escola Politécnica da Universidade de
Séao Paulo para a obtencédo do Diploma
de Engenheiro de Produgéao

Orientador:
Prof. Dr. Hugo T. Y. Yoshizaki

Sao Paulo
2004

FICHA CATALOGRAFICA

Campos, Guilherme Guidolin de

Resolucédo de um problema de abastecimento com auxilio
de meta-heuristicas e computacéo paralela / Guilherme Guidolin
de Campos. — Séo Paulo, 2004.

104 p.

Trabalho de Formatura - Escola Politécnica da Universida-
de de S&o Paulo. Departamento de Engenharia de Producéo.

1. Administracdo de materiais 2. Distribuicao fisica do esto-
que 3. Algoritmos genéticos 4. Programacéao paralela I. Univer-
sidade de Sao Paulo. Escola Politécnica. Departamento de
Engenharia de Producéo Il. t.

AGRADECIMENTOS

Ao professor Hugo por toda a ajuda e orientagcdo desde a definicdo do tema
deste trabalho até a revisdo final do mesmo.

Ao professor José Carlos Vaz pela orientacdo nas etapas iniciais do trabalho e
a professora Débora Ronconi pelo direcionamento e conselhos importantes.

A Patricia Belfiore pela ajuda no entendimento do problema e levantamento de
dados e informacgdes sobre a empresa.

Ao Prof. Kazuo Nishimoto e ao Antonio Russo pela disponibilizacdo das
instalacdbes do Cluster da Naval para a execugdo dos experimentos
computacionais e ao Gabriel Winckler pela ajuda na operacdo do mesmo.

A Cintia Celidonio pela paciéncia, incentivo e auxilio fundamental na elaboracéo
deste trabalho.

A toda minha familia e amigos que em algum momento me aconselharam e

incentivaram, contribuindo e tornando possivel a realizacao deste trabalho

RESUMO

O presente trabalho propde a utilizagdo de meta-heuristicas e computacao
paralela para a resolucdo do problema de roteamento de veiculos no processo
de abastecimento das unidades de um grupo Vvarejista com restricoes
operacionais. O problema consiste na determinacdo de um conjunto de rotas
econdmicas que devem atender a necessidade de abastecimento de cada uma
das lojas do grupo respeitando todas as restricdes, principalmente janelas de
tempo, duracdo da jornada e frota heterogénea. A estratégia adotada para a
resolucdo do problema consiste na utilizacdo de uma adaptacdo da heuristica
construtiva proposta por Clarke & Wright (1967) como solugdo inicial.
Posteriormente séo utilizados alguns algoritmos mais sofisticados buscando-se
melhorias, dentre eles o algoritmo genético paralelo resolvido com o auxilio de
um cluster de computadores. Os resultados obtidos demonstram que a
heuristica construtiva basica apresenta bons resultados para o problema, mas
ainda pode ser melhorada com o0 uso das técnicas mais sofisticadas. A
aplicacdo dos métodos propostos, proporcionou uma redugcdo no custo total da
operacdo da ordem de 11% comparando-se com as solucdes utilizadas

originalmente pela empresa.

ABSTRACT

The present work considers the utilization of meta-heuristics and parallel
computing to solve the vehicle routing problem in the branches supply process
of a retail group with operational constraints. The problem is about finding a set
of economic routs which must meet the supplying needs of each of the group’s
branches respecting all the constraints, especially time windows, rout length and
heterogeneous fleet. The adopted strategy for the problem solution consists in
the utilization of an adaptation of the constructive heuristics proposed by Clarke
& Wright (1967) as initial solution. Then some more sophisticated algorithms are
applied in order to achieve improvements, such as parallel genetic algorithms
supported by a cluster of computers. The results obtained show that the basic
constructive heuristics presents good results for the problem, but it still can be
improved by applying more sophisticated techniques. The use of the proposed
methods, provided about 11% reductions in the total cost of operations when

compared to the original solutions applied by the company.

SUMARIO

INTRODUCAO

1. DESCRICAO DA EMPRESA E DEFINICAO DO PROBLEMA

1.1. A EMPRESA

1.1.1. Descrigdo do Processo de Abastecimento

1.2. DIAGNOSTICO DO PROBLEMA

2. REVISAO DA LITERATURA

2.1, PROBLEMAS DE TRANSPORTE

2.1.1. Problema do Caixeiro Viajante — PCV

2.1.2. Problemas de Roteamento de Veiculos

2.1.3. Variagbes dos Problemas

2.2. METODOS DE SOLUGCAO

2.2.1. Dificuldade de Solucéo

2.2.2. Estratégias e Métodos de Solucao

2.2.3. Modelo de Fisher e Jaikumar

2.2.4. A Heuristica de Clarke & Wright

2.2.5. Algoritmos Meta-RaPS

2.2.6. Algoritmos Genéticos

2.3. COMPUTACAO PARALELA

2.3.1. Introducao e Conceitos Béasicos

2.3.2. Niveis de Paralelizagéo

2.3.3. Clusters

2.3.4. Biblioteca de Paralelizacdo MPI

2.4, ALGORITIMO GENETICO PARALELO

2.4.1. AGs Paralelos Mestre-Escravo

2.4.2. AGs Paralelos de Multiplas Populagées

3. MODELAGEM DO PROBLEMA

3.1 CLASSIFICACAO DO PROBLEMA

3.2. PRINCIPAIS PARTICULARIDADES DO MODELO

4. LEVANTAMENTO DE DADOS

4.1. DISTANCIAS

4.2 VELOCIDADE DOS VEICULOS

11

11
12
14
15

19
20
21
24
27
33
35

39
40
41
42
44
45

46
47

49
50

52

55
55

59

4.3. FROTA DE VEICULOS 61

4.4, DEMANDA 64
4.5. JANELAS DE RECEBIMENTO 65
5. RESOLUCAO DO MODELO 67
51. ALGORITMO ADAPTADO DE CLARKE AND WRIGHT 67

5.1.1. Atendimento da Demanda 68

5.1.2. Calculo das Economias 69

5.1.3. Frota Heterogénea 70

5.1.4. Restrigbes no Recebimento 72
5.2. ALGORITMO ADAPTADO META-RAPS 73
5.3. ALGORITMO GENETICO 75
5.4. ALGORITMO GENETICO PARALELO 83
6. ANALISE DOS RESULTADOS 86
6.1. SOLUCAO ATUAL DA EMPRESA 86
6.2. COMPARACAO ENTRE OS METODOS 88
6.3. IMPLEMENTACAO DA SOLUCAO 96
7. CONCLUSOES 100
BIBLIOGRAFIA 102
ANEXOS |

ANEXO A - Biblioteca MPI i

ANEXO B — O Cluster \Y

ANEXO C - Resultados Detalhados iX

ANEXO D — Cdédigo Fonte dos Programas Xiii

LISTA DE FIGURAS

FIGURA 1.1 - AREA DE ATUAGAO DO GRUPO NO BRASIL (ELABORADO PELO AUTOR) 4
FIGURA 1.2 - FLUXOGRAMA DA OPERAGAO DE ABASTECIMENTO (ELABORADO PELO AUTOR) 5
FIGURA 1.3 - PROCESSO DE ABASTECIMENTO SIMPLIFICADO (ELABORADO PELO AUTOR) 9
FIGURA 2.1 - TRES PROBLEMAS CLASSICOS DE DISTRIBUIGAO (ELABORADO PELO AUTOR) 11
FIGURA 2.2 - GRAFO DE UM PCV E SUA SOLUGAO (EXTRAIDO DE GOLDBARG, LUNA, 2000) 13
FIGURA 2.3 - EXEMPLO DE FORMAGAO DE ROTAS PARA UM DEPOSITO (ELABORADO PELO AUTOR) __ 15
FIGURA 2.4 - ESTRATEGIAS PARA SOLUGAO DO PRV (EXTRAIDO DE GOLDBARG E LUNA, 2000) 21
FIGURA 2.5 - CONFIGURAGAO INICIAL: UMA ROTA PARA CADA PONTO (ELABORADO PELO AUTOR) 28

FIGURA 2.6 - CONFIGURAGAO APOS A JUNGAO DOS PONTOS NUMA MESMA ROTA (ELABORADO PELO
AUTOR) 29

FIGURA 2.7 - ESQUEMA SIMPLES DE UM CLUSTER BEOWULF (ELABORADO PELO AUTOR) 43

FIGURA 2.8 - TOPOLOGIA BASICA DE UM AG MESTRE-ESCRAVO (ADAPTADO DE CANTU-PAZ, 1999) 47

FIGURA 2.9 - ESQUEMA DE UM AG PARALELO DE MULTIPLAS POPULAGCOES. AS SUB-POPULACOES
TROCAM INDIVIDUOS COM SEUS VIZINHOS NESTE ESQUEMA (ADAPTADO DE CANTU-PAZ,
1999) 48

FIGURA 3.1 - PROCESSO DE ABASTECIMENTO SIMPLIFICADO (ELABORADO PELO AUTOR) 50

FIGURA 3.2 - (A) APENAS UM ROTEIRO PODE PASSAR POR CADA LOJA, (B) POSSIBILIDADE DE DOIS

ROTEIROS PASSAREM PELA MESMA LOJA (ELABORADO PELO AUTOR) 53

FIGURA 4.1 - LOCALIZAGAO DAS LOJAS E CD Do GRUPO (ELABORADO PELO AUTOR) 56
FIGURA 4.2 - CORRELAGAO ENTRE O FATOR DE CORREGAO E A DISTANCIA (ELABORADO PELO AUTOR) 58
FIGURA 4.3 - GRAFICO DE DISTRIBUIGAO DOS FATORES DE CORREGAO (ELABORADO PELO AUTOR) __ 59
FIGURA 4.4 - GRAFICO VELOCIDADE MEDIA DESENVOLVIDA DE ACORDO COM A DISTANCIA DO TRECHO

(ELABORADO PELO AUTOR) 60

FIGURA 5.1 - EXEMPLO DO CALCULO MODIFICADO DAS ECONOMIAS (ELABORADO PELO AUTOR) 70
FIGURA 5.2 - CORRELAGAO ENTRE NUMERO DE ITERAGOES E QUALIDADE DA SOLUGAO (ELABORADO

PELO AUTOR) 83

FIGURA 6.1 - EXEMPLO DE ROTEIROS FORMADOS PELO AG PARALELO (A, B) E PELO META RAPS (c, D)

PARA O CENARIO BASE (ELABORADO PELO AUTOR) 89

FIGURA 6.2 - COMPARAGAO ENTRE AS ROTAS FORMADAS PARA 4" FEIRA (ELABORADO PELO AUTOR) _ 93

FIGURA 6.3 - NOVO PROCESSO DE ABASTECIMENTO 96

LISTA DE TABELAS

TABELA 2.1 - DIFERENTES ASPECTOS DE UM PROBLEMA DE ROTEIRIZAGAO (ADAPTADO DE ASSAD 1988)

49
TABELA 4.1 - LISTA DE VEICULOS UTILIZADOS NAS OPERAGCOES (ELABORADO PELO AUTOR) 61
TABELA 4.2 - DETALHES DOS VEICULOS (ELABORADO PELO AUTOR) 62
TABELA 4.3 - EXEMPLO DE CUSTOS DE FRETE POR REGIAO E MODELO DE VEICULO (ELABORADO PELO
AUTOR) 63
TABELA 4.4 - CONSOLIDAGAO DAS CARGAS NO DIA ESCOLHIDO (ELABORADO PELO AUTOR) 64
TABELA 4.5 - DESCRIGAO DOS TIPO DE CARGA (ELABORADO PELO AUTOR) 65
TABELA 4.6 - JANELAS DE RECEBIMENTO (ELABORADO PELO AUTOR) 66
TABELA 6.1 - CUSTOS AJUSTADOS DOS CENARIOS (ELABORADO PELO AUTOR) 88
TABELA 6.2 - RESUMO DOS CASOS CONSIDERADOS (ELABORADO PELO AUTOR) 88
TABELA 6.3 - CUSTO TOTAL DAS SOLUGOES (ELABORADO PELO AUTOR) 90

TABELA 6.4 - RESTRIGOES VIOLADAS NAS SOLUGCOES PARA O CASO BASE (ELABORADO PELO AUTOR) 91

TABELA 6.5 - TEMPOS DE PROCESSAMENTO (ELABORADO PELO AUTOR) 92

INTRODUCAO

Todo sistema logistico tem como objetivo proporcionar aos clientes os bens
desejados no local, tempo e quantidade que melhor atendam as suas
necessidades, incorrendo no menor custo possivel. Para tanto, as empresas
devem tomar uma série de decisbes que envolvem principalmente a estratégia
de localizag&o de suas fabricas e centros de distribuicédo, estratégia de estoque
envolvendo previsdo de demanda, compras, politicas de armazenagem, etc. e
estratégia de transporte. Uma vez definidas as principais estratégias logisticas
da empresa e estabelecida sua estrutura fisica, cada atividade deve ser
planejada de forma a se atingir um nivel de exceléncia operacional que garanta
o uso eficiente dos recursos disponiveis oferecendo o melhor nivel de servigco

pelo menor custo.

Segundo Ballou (2001), dentre todas as atividades logisticas, o transporte é
aguela que absorve a maior parcela dos custos. A selecdo do modal de
transporte a ser utilizado, a definicdo de politicas de entrega, consolidagdo das
cargas e roteirizagdo, e programacdo dos veiculos estdo entre as atividades
mais importantes a serem executadas neste campo. Quanto maior o numero de
produtos diferentes com que uma empresa trabalha, menores os prazos e maior

0 numero de pontos de entrega, mais complexa se tornam estas atividades.

A empresa em questdo é um destes casos onde a complexidade da atividade
logistica faz com que esta seja uma preocupacdo central. Assim, estaremos
propondo neste trabalho alguns modelos para determinar de forma estruturada,
maneiras melhores de se transportar as mercadorias dos centros de distribuicéo
para as lojas do grupo. Buscaremos assim, diminuir os custos da atividade de
transporte e melhorar o nivel de servico, medido pelo nimero de restricdes que
sdo violadas, tais como o atendimento total da demanda, horarios de entrega,

entre outras.

1. DESCRICAO DA EMPRESA E DEFINICAO DO PROBLEMA

Neste capitulo descreveremos a empresa estudada e definiremos o problema a
ser resolvido no decorrer do trabalho. Num primeiro momento detalharemos a
estrutura da empresa e seus processos, dando uma visédo geral da mesma. Na
segunda parte sera definido o problema a ser solucionado e 0s objetivos a
serem alcancados pelo presente trabalho.

Para preservar em sigilo as informagdes consideradas estratégicas pela
empresa, e de acordo com sua propria solicitacdo, o nome da companhia nao
sera revelado, assim como alguns dados ao longo deste trabalho seréo
modificados.

E importante deixar claro neste momento que o autor nio realizou seu estagio
nesta companhia como é de costume na elaboracdo dos Trabalhos de
Formatura. No entanto, a escolha do tema, a definicho do problema a ser
abordado, e a troca de informacdes necessérias para a elaboracdo deste
trabalho foram feitas de comum acordo com a geréncia da empresa
responsavel pelo processo logistico. Além disso, o tema escolhido para o
trabalho apresenta forte relacdo com as duas iniciagbes cientificas realizadas
pelo autor ao longo dos ultimos anos nas areas de logistica e de computacao

paralela.
1.1.A EMPRESA

O Grupo € um dos pioneiros no setor varejista do Brasil. Atuando a décadas, &
hoje um dos maiores grupos no varejo com grande participacdo em um
mercado altamente fragmentado. Ao longo de sua histéria 0 grupo cresceu
constantemente de forma organica e através de aquisi¢cdes. Atualmente, além

de suas operacgOes comerciais, a empresa patrocina diversas atividades sociais

e culturais.

A Cadeia de Suprimentos, foco deste trabalho, € uma area estratégica que
engloba as funcbes logisticas e comerciais de todo o grupo. A estrutura
logistica é responsavel pelo abastecimento de produtos as lojas, desde a
gestdo dos estoques até o fluxo fisico de mercadorias. Ela é capaz de agregar
valor a operacdo melhorando a receita, reduzindo a ruptura (falta de produtos

nas lojas) e diminuindo custos de transportes e investimentos em estoque.

A Companhia opera diversos tipos e tamanhos de lojas com eficiéncia, gragas a
uma estrutura centralizada, em forma de Centros de Distribuicdo (CDs). O
Grupo ultrapassou o patamar de 80% de centralizacdo dos estoques em 2003,
um percentual proximo aos padrbes internacionais. Outro beneficio da
centralizacdo foi a redugcdo nos investimentos em estoque, por conta do
aumento do giro dos produtos, além do maior controle sobre o processo de
abastecimento das lojas.

A estrutura logistica do grupo € formada por 10 CDs, que totalizam uma
capacidade de armazenagem superior a 200 mil metros quadrados de area
construida. A companhia opera CDs multi-categoria, que atendem a
determinadas regides com raio de atuagdo de até 500 quildbmetros em 6 capitais
brasileiras. Em Sao Paulo, possui quatro CDs especializados em categorias
especificas, dado o tamanho do mercado que justifica esta segmentacao.

® Centros de Distribuicdo
[] Estados onde o Grupo atua

Figura 1.1 - Area de atuac&o do Grupo no Brasil (elaborado pelo autor)

Na proxima secao iremos detalhar a forma como estes centros de distribuigdo
realizam o abastecimento das lojas do Grupo e como ocorre este processo,

desde o recebimento dos pedidos até a entrega efetiva.

1.1.1. Descricao do Processo de Abastecimento

De acordo com suas necessidades, 0s gerentes de loja ou secdao fazem
diariamente seus pedidos. A entrega pode ser feita de duas formas: via
depdsito ou diretamente pelo fornecedor com o pedido sendo feito via EDI
(Electronic Data Interchange). Apos o fechamento do faturamento uma Central
de Programacédo (CP) decide como sera feita a distribuicdo das cargas do CD
as lojas através de roteirizacdo, de acordo com os veiculos disponiveis. A
separacdo das cargas solicitadas pela CP é feita pela parte operacional dos
CDs. Caso a carga a ser entregue exceda a capacidade dos veiculos, é feita
uma revisdo, ou seja, estuda-se a possibilidade de alterar o tipo modelo do

veiculo ou combinar e alterar os roteiros. O objetivo final é atender aos pedidos

dos clientes nos prazos adequados com o pleno atendimento da demanda e

sem que nenhuma restricdo seja violada.

A apresenta uma simplificacdo dos fluxos dos processos que ocorrem na

Central de Programagéo.

arente de loja ou secda
avalia seu estoque e faz
o pedida

Itens
eritregues

Fornecedar
entrega
diretamente

Pedido vai para as Chs

(2 ©,
Central de programacio Central de programacio
espera o fechamento dao #| =solicita veiculos para
faturamerta Transpore
¥ Pedido
@ autornitico
¥ o
Central de programacio @ (sugestdo)
concatena Cargas .
#{ fazendo a roteirizacdo |+ d.Tr.anS.E::i.rte uenﬁga F
e acordo cam o izponibiliza oz veiculos
veiculos disponibilizados

©; :
_F i
Operacional dos Chs
SEpAra a5 CArgas
desig nad as pela Central
& program agio

),
Transpattar os
Fecharnento da produtos para as
carga e lacre lojas em prazos
adequados

dispaniv eis
atendarmn a
carregamen
to?

Revizio do
robeiros

Figura 1.2 - Fluxograma da operacéao de abastecimento (elaborado pelo autor)

Todo o processo de abastecimento tem inicio com o pedido feito pelo gerente
das lojas que avalia o estoque disponivel para todos os itens vendidos e
comunica a Central de Programagédo sobre sua necessidade. Em algumas

situagdes, dependendo do tipo de produto e da quantidade solicitada, o pedido

segue diretamente para o fornecedor via EDI que se responsabiliza pela

entrega para a loja.

Ha um algoritmo que gera esses pedidos automaticamente, porém os dados
séo sistematicamente alterados pelo gerente/chefe da secdo. O algoritmo leva
em conta apenas 0s estoques nas lojas. Algumas lojas consideram uma
guestao logistica, o arredondamento de paletes, jA outras ndo interferem nos
pedidos e sao lojas que tém menos ruptura.

Uma vez finalizados os pedidos, estes sdo encaminhados para a Central de
Programacao que inicia o processo de formacao de cargas apos o fechamento
do faturamento. Em seguida sé&o formados os roteiros que serdo utilizados na

entrega dos produtos para as lojas.

Atualmente, o processo de formagédo de cargas e roteirizagdo utiliza alguns
itinerarios determinados anteriormente que sao ligeiramente adaptados de
acordo com a demanda especifica do dia. O calculo esta vinculado a
parametros de equipamentos de movimenta¢do, ocupacdo do veiculo e
capacidade fisica da loja. A formacdo da carga segue 0s seguintes parametros
cadastrados no sistema:

Cadastro de loja: tipo de veiculo, tipo de equipamento, prioridade de
entrega;

Cadastro de CD para encaixe: informar quais CDs podem realizar
encaixes;

Peso/m® por equipamento/Loja: paletes, gaiolas, rolltainers;

Cadastro por veiculo: capacidade maxima por veiculo/regido (capital,
interior, interestadual), em peso e m?;

Cadastro de itinerarios: cadastro de agrupamento de lojas de acordo com

o tipo de veiculo;

Depois de efetuado o processamento do faturamento, o sistema segue as
rotinas, considerando sempre o maior tipo de veiculo e liberando para usuario
as cargas com 90% da ocupacao. Neste processo séo realizadas as seguintes

etapas:

1) Com base nos parametros, o melhor veiculo é escolhido para 1
entrega, ou seja, 1 loja;

2) Se houver cadastro de CDs para encaixe, 0 sistema otimiza a carga
das duas ou mais categorias para 1 entrega (1 loja);

3) Se os encaixes nao proporcionarem a otimizacdo maxima da carga, o
sistema buscard a composicdo de acordo com o agrupamento de
itinerarios;

4) Se nao houver possibilidade de encaixe, o sistema formara cargas de
acordo com 0s agrupamentos de itinerarios;

5) Finalmente, busca-se a otimizacdo com veiculo alternativo. Caso ndo

seja possivel, aguarda-se o préximo faturamento.

Este procedimento realizado pelo sistema tem a grande vantagem de ser muito
rapido e bastante intuitivo para os operadores. No entanto, ele é relativamente
fraco quanto a otimizag&o dos roteiros, uma vez que ndo considera diferentes
combinacdes de lojas nem sequéncias alternativas para serem incluidas em

cada um deles.

A atividade de transporte € conduzida por terceiros, uma vez que o Grupo
tomou a decisdo de ndo possuir veiculos proprios, dada a dificuldade de se
gerenciar de forma eficiente uma frota do tamanho necessario. O transporte é
feito por 40 transportadoras terceirizadas, que mantém cerca de 500 veiculos
dedicados ao abastecimento das lojas do Grupo. A média é de mil viagem por

dia, tendo sido atingido o recorde de mais de 3 mil viagens numa Unica data.

1.2. DIAGNOSTICO DO PROBLEMA

Com uma operacdo do porte mencionado, ha anos o Grupo investe em
sistemas de previsdo de demanda e controle de estoque para atender de
maneira adequada seus clientes. Por outro lado, o procedimento de
abastecimento das lojas é nitidamente deficiente. Tal fato ocorre devido a
complexidade inerente ao problema e a inexisténcia de ferramentas adequadas

de otimizacdo. Vamos explicar um pouco melhor este problema a seguir.

No final de cada dia, é calculada a necessidade de abastecimento de cada uma
das lojas. Nesta etapa do processo ja surgem complicacdes, pois algumas lojas
da rede funcionam num sistema 24h. Ao mesmo tempo, 0s centros de
distribuicdo fazem a contabilizacdo de todas as movimentagdes que ocorreram
durante o dia (entregas para as lojas e recebimento de fornecedores), e
verificam a disponibilidade de cada um dos itens em estoque. O sistema entao
prioriza os pedidos de acordo com uma seérie de critérios pré-definidos pela
direcdo, gerando uma lista de tudo que devera ser entregue no dia seguinte. O

namero total de itens a serem entregues ultrapassa uma dezena de milhares.

As lojas trabalham com um conceito chamado de janela de recebimento que
consiste num intervalo de tempo no qual o abastecimento das mesmas deve ser
realizado. Além disso, o0 volume elevado de carga transportada exige que o
processo de entregas comece cedo, para garantir que todas as lojas sejam
abastecidas num periodo adequado. Desta forma, o tempo disponivel entre o
final do processo de priorizacdo do abastecimento e o inicio das entregas €&
muito reduzido, da ordem de uma hora. Este € o tempo que os funciondrios tém
para planejar todas as rotas e decidir que tipo de caminhao ir4 percorrer cada
uma delas atendendo a totalidade das lojas nos horéarios adequados.

Uma vez que os roteiros tenham sido planejados, tem inicio o processo de

entrega para as lojas a partir do centro de distribuicdo. A ilustra de maneira
simplificada um possivel resultado da roteirizagdo. Neste caso, a demanda das
5 lojas sera entregue através de 2 roteiros, sendo cada um deles percorrido por

um veiculo diferente.

=]

] / N —
) T Lojes
NONE

[]

Figura 1.3 - Processo de abastecimento simplificado (elaborado pelo autor)

7

Como podemos ver, esta € uma tarefa enorme e o tempo disponivel
inadequado. Assim, a primeira solucdo encontrada que atenda todas as
restricbes do problema (que abordaremos em profundidade mais adiante) é
utilizada, mesmo que ndo seja a melhor do ponto de vista da otimizacdo dos

recursos.

Neste sentido, 0 objetivo final deste TF consiste na elaboragdo de um modelo
para a selecdo de veiculos, consolidacdo das cargas e roteirizacdo que atenda
as restricdes enfrentadas no abastecimento das lojas, e implementar métodos
de solucdo que consigam obter resultados melhores do que os atuais no

periodo de tempo disponivel.

10

O resultado esperado deste modelo é que ele permita construir diariamente um
conjunto de roteiros especificando todas as lojas que serdo atendidas, a
sequéncia de atendimento e o tipo de veiculo que atenderd cada um deles,
como na . Caso se consiga realizar estes objetivos a contento, o Grupo vai
estudar a possivel implementacdo da solucdo proposta através de uma

ferramenta.

Como o problema abordado é extremamente complexo do ponto de vista de
otimizagdo, como veremos adiante, um ultimo objetivo deste trabalho é a
aplicacdo da Computacéo Paralela através de um Cluster de computadores na

resolucdo do mesmo, visando avaliar o potencial desta ferramenta.

O estudo sera focado no atendimento das lojas localizadas no estado de Sé&o
Paulo a partir do principal centro de distribuicdo da empresa, o que representam
um total de 323 unidades a serem atendidas. Como nem todas as lojas devem
ser abastecidas todos os dias da semana, escolhemos um dia tipico para
utilizar como base para o trabalho. Neste dia, 214 lojas registraram pedidos
para o CD em questdo. O escopo deste trabalho também estard restrito a
cargas paletizadas, que podem ser transportadas sem o uso de caminhdes
especiais e que compde a grande maioria das entregas feitas no processo de
abastecimento. Da mesma forma, ndo serdo considerados os pedidos
atendidos diretamente pelos fornecedores, mas apenas aqueles destinados aos
CDs.

11

2. REVISAO DA LITERATURA

Esta revisdo da literatura visa fornecer subsidios a defini¢cdo clara do problema
e identificacdo dos melhores métodos disponiveis para sua solucdo. Nela
discutiremos os problemas de transporte e como o problema de roteirizacdo de
veiculos se enquadra nesta categoria, bem como o0s critérios para a
classificacao destes problemas. Na segunda parte buscaremos nos aprofundar
nos métodos de solugcdo existentes para os problemas de roteirizacdo de
veiculos. Em seguida sera feita uma introdug&@o sobre a computacédo paralela e
seu uso nha solucao de problemas complexos. Finalmente serd apresentado um
método de solugcdo que combina os algoritmos apresentados com a

computacéao paralela.
2.1.PROBLEMAS DE TRANSPORTE

Segundo Ballou (2001), embora haja uma grande variedade de problemas de
distribuicdo, podemos agrupa-los em alguns tipos basicos. H4 o problema de
encontrar um caminho através de uma rede onde o ponto de destino é diferente
ao ponto de origem. Ha um problema similar onde ocorrem multiplos pontos de
origem e destino e o problema de roteamento quando os pontos de origem e

destino sao exatamente 0s mesmos ().

oy K

(a) - origemn & destino diferentes (bY - mnltiplas origens e destinos {e) - origem e destino
coincidentes

Figura 2.1 - Trés problemas classicos de distribuigcéo (elaborado pelo autor)

12

O problema a ser tratado no presente trabalho enquadra-se nesta terceira
categoria, onde se encontram alguns dos problemas classicos de transporte
como o PRV (Problema de Roteamento de Veiculos) e o PCV (Problema do
Caixeiro Viajante), sendo que em ambos 0s casos 0S pontos de origem e
destino sdo coincidentes. A diferenca entre eles € que no primeiro, multiplas
rotas podem ser formadas para percorrer todos 0s pontos, enquanto no
segundo eles devem ser atendidos por apenas uma rota.

Neste capitulo discorreremos sobre o0s problemas de transporte e
apresentaremos a definicho e alguns conceitos sobre os problemas de
roteamento de veiculos. Em seguida, apresentaremos alguns modelos
tradicionais utilizados para o tratamento deste tipo de problema e novos

métodos considerados na sua solugéo.

2.1.1. Problema do Caixeiro Viajante — PCV

O problema do caixeiro viajante pode ser considerado uma forma mais simples
do problema de roteamento de veiculos e, portanto, sua compreensao sera (til
na busca de um método de solucéo eficiente para 0 mesmo. Na pratica, o PCV
pode ser utilizado para representar cada um dos roteiros no processo de
abastecimento, como os da Este é um problema de otimizagdo associado a
determinacdo dos caminhos 6timos sobre um grafo iniciando e terminando no
mesmo Vvértice sem nunca repetir uma visita. Assim, o objetivo do PCV é

encontrar em um grafo G = (N, A) o caminho de menor custo.

13

Figura 2.2 - Grafo de um PCV e sua solugéo (extraido de Goldbarg, Luna, 2000)

Existem diversas formulacbes para este problema. Dantzig, Fulkerson e
Johnson (1979) formularam o PCV como um problema de programacéo binaria
sobre um grafo G = (N, A), como segue:
Minimizarz = én én Cii X;
j=1 i=1

(1)
sujeito a:
g -
ax =1 " TN ®)
i=1
g -
ax; =1 il N (3)
j=1
ax £s|-1 "S1 N (4)
iji s
x; 1 {0, "IN (5)

Onde a variavel binaria x; assume valor igual a 1 se o arco(i,j)T A for
escolhido para integrar a solugdo, e O em caso contrario, ¢; € um custo

associado ao arco (i,j), e S é um subgrafo de G em que |S| representa o

namero de vértices desse subgrafo. As restricdes (2) e (3) garantem que cada
ponto da rede tenha um e somente um arco chegado e um arco saindo. O

conjunto de restricdes (4) impede o surgimento de sub-rotas na solugéo 6tima.

Problema do caixeiro viajante com janela de tempo - PCVJT

14

Um dos problemas relacionados ao PCV é o Problema do Caixeiro Viajante
com Janela de Tempo - PCVJT. Ao associar uma variavel t; a cada arco do
grafo G = (N, A), representando a duracdo do percurso entre 0s nos i e j, pode-

~

se imaginar que a chegada a cada veértice i, il N go grafo G é restrita ao
intervalo [a;, b], denominado de janela de tempo. Assim, sdo consideradas
viaveis apenas as solu¢cbes que atendem a restricdo de janela de tempo. Este
modelo é mais parecido com o problema que estamos tentando resolver, pois

conforme visto no item 1, as lojas operam com janela de tempo.

2.1.2. Problemas de Roteamento de Veiculos

Para que possamos compreender melhor os problemas de roteamento de
veiculos (PRV), é necessario definir os sistemas de roteamento. Segundo
Goldbarg e Luna (2000), considera-se um sistema de roteamento um conjunto
organizado de meios com o objetivo de atender pontos de demanda localizados

em arcos ou vertices de alguma rede de transportes.

Na operacdo de abastecimento, € necessario um plano efetivo e flexivel de
entregas, de modo a atender as especificagdes referentes ao nivel de eficiéncia
do servico de transporte. Este plano ou roteiro deve ser definido
guantitativamente e atender da melhor maneira possivel todas as restricdes do
problema. Dentro desse contexto, surge um grupo de problemas de
caracteristica combinatéria e de grande dificuldade de solugdo, que se
denominam problemas de roteamento de veiculos. O objetivo do planejamento
sera estabelecer um roteamento e sequenciamento, e o emprego de veiculos
gue conduzam a minimizacao do custo da atividade. Segundo Goldbarg e Luna
(2000), a idéia basica do problema de roteamento é, com o uso de veiculos,
visitar uma série de clientes ao menor custo possivel, atendendo a todas as

demais imposic¢des do problema.

15

S~ —

Figura 2.3 - Exemplo de formacao de rotas para um depdsito (elaborado pelo autor)

2.1.3. VariagOes dos Problemas

Apesar do conceito de roteamento de veiculos ndo ser de dificil compreenséo,
existe um grande numero de variagdes do mesmo. Ronen apud Cunha (1997)
afirma que os problemas pertencentes a esta classe podem ser agrupados em
trés categorias basicas:

Problemas relativos ao transporte de passageiros: programacao de linha
de 6nibus, sistemas de taxi, transporte de idosos e deficientes (dial-a-
ride), transporte escolar, entre outros;

Problemas de prestacéo de servigos: equipes de reparos, coleta de lixo,
entrega postal, servico de limpeza de vias, etc;

Problemas de transporte de cargas: entrega e coleta de produtos em
multiplas localidades.

O problema de transporte de carga pode ser classificado ainda segundo uma

série de critérios que englobam, entre outros:

16

Tamanho, composicéo, e estrutura de custos da frota;
Numero de bases de origem e destino para os veiculos;
Demanda (entrega ou coleta), deterministica ou estocastica;
Atendimento total ou parcial da demanda,;

Aleatoriedade dos locais e horarios de entrega e coleta;

Limites de distancia ou duracao dos roteiros.

Assad (1988) propde a classificacdo dos problemas de roteirizacdo de veiculos

segundo alguns aspectos basicos do problema:

Aspectos do problema | VariagcGes

- entrega, coleta ou backhaul

- tipos diferentes de produtos

- atendimento total ou parcial
Demanda - prioridade de clientes

- contratacao de servigos de terceiros
- demanda conhecia ou aleatéria

- entregas periddicas ou Unica

- homogenia ou heterogénea

- restricdo de capacidade / carregamento
] - vinculo entre veiculo e base

Frota de Veiculos o)
- compatibilidade ente veiculo e produto
- nimero fixo ou variavel de veiculos

- veiculo em um ou multiplos depésitos

- duracao da jornada de trabalho

- opcéao de horas extras

- nimero fixo ou varidvel de motoristas
Pessoal o _
- hora e local do inicio da jornada
- paradas (almoco, descanso)

- possibilidade de viagens maiores que 1 dia

17

- janelas de tempo (rigidas ou flexiveis)
- tempo de carga e descarga

Programacao .
- horario de abertura e fechamento
- dias da semana para o atendimento de clientes
- disponibilidade de dados geograficos e redes
viarias
. - recursos de localizagao de enderegos
Informacdes

- tempos de viagem

- localizac¢éo dos veiculos

- informacgdes sobre o crédito dos clientes

Tabela 2.1 - Diferentes aspectos de um problema de roteirizacdo (adaptado de Assad
1988)

Dada a grande variedade de aspectos do problema de roteirizagdo de veiculos,
fica evidente a dificuldade de se estabelecer uma classificagdo Unica para todos
os problemas. Na prética, cada caso podera assumir quaisquer combinacdes
destes fatores tornando-se quase Unico. No entanto existem alguns casos mais
gerais cuja compreensdo nos ajudard no esforco de encontrar o método mais
adequado de solucdo para o problema especifico que estaremos abordando

neste trabalho.

Problema de Roteamento de Veiculos (PRV): Tem como objetivo encontrar um
conjunto de rotas, iniciando e terminando em um mesmo ponto, de forma a
minimizar a distancia total percorrida e/ou o numero de veiculos utilizados. A
formulacdo deste problema inclui basicamente as seguintes restricdes:

Nenhum veiculo deve sair do ponto inicial mais que uma vez;

Todos os veiculos devem retornar ao ponto de origem;

Todos os destinos devem ser visitados uma Unica vez.

Problema de Roteamento de Veiculos com Capacidade (CPRV): o PRV com

capacidade obedece a mesma formulacéo do problema original com a inclusao

18

de uma restricao de volume transportado nas rotas limitado pela capacidade de
carga do veiculo. Neste problema, a cada ponto da rede é atribuida uma
demanda que devera ser atendida pela rota a que ele pertenca.
O total das entregas feitas por um veiculo ndo pode exceder sua
capacidade;

A demanda de todas as lojas deve ser atendida.

Problema de Roteamento de Veiculos com Janela de Tempo (PRVJT): Trata-se
uma generalizagcdo do PRV. A solucdo do PRVJT deve garantir que o tempo de
coleta e entrega do usuéario ndo viole a restricdo de janela de tempo. Este
problema esta sujeito as restricdes originais do PRV além de:

Os tempos maximo e minimo de viagem de cada veiculo devem ser

respeitados;

Os destinos ndao podem ser visitados apés o final da janela de

recebimento.

Problema de Roteamento de Veiculos com Frota Heterogénea (PRVFH): o PRV
com frota heterogénea € um caso mais proximo da realidade, pois considera
gue os veiculos utilizados no roteamento possuem caracteristicas diferentes.
Assim, podemos considerar que tanto os custos fixos de uma frota, quanto os
variaveis, como combustivel, etc, sdo diferentes de acordo com o modelo do
veiculo. Da mesma maneira, a capacidade de carga de cada um deles pode ser
diferente, o que torna o problema bem mais complexo. Além de decidir quais as
melhores rotas para realizar as entregas devem ser estabelecidos os veiculos

gue irdo percorrer cada uma delas.

Problema de Roteamento de Veiculos com Frota Fixa (PRVFF): O problema
basico de roteamento de veiculos considera a existéncia de um numero
ilimitado de veiculos disponiveis para roteirizacdo. No entanto, muitas vezes as

empresas possuem um determinado nimero de veiculos proprios e ndo tem a

19

opcdo conseguir mais veiculos. Neste caso, podemos considera-lo como um
problema de roteamento com frota fixa, onde o aproveitamento de cada veiculo
disponivel passa a ser fundamental para garantir o atendimento da demanda.

O nuamero de veiculos utilizados ndo pode exceder sua disponibilidade

Certamente existem outros casos do PRV que podem ser obtidos pela
combinacdo destas e de outras caracteristicas do problema, tais como as
descritas na . Mesmo assim, a compreensao dos aspectos fundamentais destes
problemas basicos apresentados ajudara tanto na especificacdo do problema a
ser resolvido quanto na identificacdo dos métodos de solu¢cado mais apropriados.

A solucédo do problema PRV e todas as suas variagdes consiste em uma rota ou
em um conjunto de rotas que especifica a sequéncia dos destinos que deverao
ser visitados. No entanto, para se obter uma boa solu¢do para o problema é
necessario investir um consideravel tempo no desenvolvimento de um
programa computacional apropriado. Quase todos os modelos implementados
para o PRV utilizam procedimentos heuristicos, que conseguem obter solugdes
boas para problemas reais, uma vez que o0s modelos otimizantes né&o
conseguem chegar a uma solugéo para classe de problemas dada a sua grande
complexidade e caracteristica combinatéria. Na proxima secdo estaremos
analisando os métodos de solugdo encontrados na literatura e sua

aplicabilidade ao problema abordado neste trabalho.

2.2.METODOS DE SOLUCAO

Existe na literatura uma grande variedade de métodos utilizados na solucdo dos
problemas de transporte, especialmente o de roteirizacdo de veiculos. Um dos
fatores que contribui para este fato € a grande dificuldade de se encontrar
solucdes Otimas para o problema devido a sua alta complexidade e

possibilidade de variagbes. Assim, alguns meétodos que conseguem bons

20

resultados para um grupo de problemas ndo se saem tdo bem para outros com
algumas variacbes em sua formulacdo. Desta forma, muitos pesquisadores se

esforgam no desenvolvimento de novos métodos e aplicagdes.

A grande maioria dos métodos de solugdo existentes se enquadra em uma de
trés categorias: métodos otimizantes, heuristicas construtivas e métodos
iterativos de melhoria ou meta-heuristicas. Nesta se¢édo iremos abordar alguns
destes métodos com o intuito de estabelecer a melhor estratégia de solucéo
para o problema tratado neste trabalho.

2.2.1. Dificuldade de Solucéo

Os problemas de roteamento de veiculos variam quanto a sua complexidade
dependendo do numero de varidveis e restricdes que o problema considera em
sua formulacdo. Alguns problemas podem ser considerados quanto a sua
complexidade como intrataveis. Mesmo com o0 uso de computadores teriamos
dificuldades muito grandes com esses problemas. N&o se trata somente de
aumentar a capacidade da maquina, pois a dificuldade reside na natureza
combinatéria desse tipo de problema que, até hoje, tem impedido a concepc¢ao
de algoritmos eficientes de solugdo. Esses problemas séo tratados como NP-
Arduos (do inglés NP-Hard). Em outras palavras, o esforco computacional para
a sua resolugéo cresce exponencialmente com o tamanho do problema, dado
pelo nimero de pontos a serem atendidos. Para esses problemas complexos,
na busca por boas solugdes, sdo utilizadas técnicas para alcancar solugdes
préximas da 6tima, como as heuristicas. A , abaixo, mostra como a pesquisa

operacional desenvolveu estratégias para tratar cada tipo de problema.

21

Problemas de Roteamento de

Veiculos
‘ Problemas Polinomiais | | Problemas NP-Arduos ‘
‘ Algoritmos Exatos | ‘ Relaxacoes ‘ | Algoritmos Exatos
Algoritmos
Aproximativos

Figura 2.4 - Estratégias Para Solucdo do PRV (Extraido de Goldbarg e Luna, 2000)

Devido ao seu carater fortemente combinatério, a maioria dos problemas
praticos de roteamento de veiculos (PRV) é do tipo NP-Arduo (Goldbarg e
Luna, 2000). Como visto na , este tipo de problema poder ser tratado com
algoritmos exatos, relaxagdes e algoritmos aproximativos. Os algoritmos exatos
sdo usados apenas em casos de PRV com poucas varidveis e restricoes.
Normalmente, este tipo de resolucdo vem acompanhado de técnicas de
relaxacdes, que ajudam a eliminar algumas variaveis e restricdes do problema.
Em outros casos, sdo utilizados algoritmos aproximativos (heuristicas), que
buscam de maneira simplificada, mas eficiente, solugcdes que aproximem ao
méaximo da solucdo 6tima do problema. A seguir apresentaremos as principais
classificacdes das estratégias e métodos de solucao.

2.2.2. Estratégias e Métodos de Solucéao

As estratégias de solucdo para roteirizacdo de veiculos sdo classificadas,

segundo Bodin apud Cunha (1997), da seguinte forma:

1 — Agrupa e Roteiriza (cluster first — route second) — é o procedimento que

primeiramente agrupa os nos de demanda e depois constréi as rotas mais

22

econdmicas em cada um destes grupos. Essa estratégia geralmente é utilizada

em problemas basicos com um Unico deposito na roteirizagdo de veiculos.

2 — Roteiriza e Agrupa (route first — cluster second) — incluindo todos os nés de
demanda, primeiro constréi-se uma grande rota sem solucdo possivel, depois
esta é dividida em rotas factiveis e menores. Este modelo ja foi usado na
resolucdo de alguns problemas contendo roteirizagdo com frota heterogénea de

veiculos e em outros com varredura de ruas.

3 — Economias ou inser¢Bes — procedimento onde se constroi uma solugdo em
um determinado caminho, sendo que em cada etapa deste processo se
compara a configuragdo em construgdo, com uma solucdo alternativa. A
solucdo alternativa serd a que apresentar maior economia em algum critério
adotado, como custo total, ou a que inserir na rota em construgao, entidades da
demanda, de forma menos custosa. Conclui-se 0 processo quanto todas as

insercdes factiveis tiverem sido realizadas.

4 — Melhoria / Troca — procedimento heuristico onde ha uma troca de arcos em
cada etapa do processo, buscando uma nova solugdo com menor custo, este
se repete até que ndo haja solu¢cdes mais econdmicas. Este método também é
conhecido como r-opt, onde r € o numero de arcos trocados a cada etapa, todos
0s r arcos sao trocados até que ndo haja Nenhuma troca factivel que melhore o
custo do problema. Os valores mais usados sao r=2 (2-opt) e r=3 (3-opt).

5 — Otimizacdo interativa — para a solucdo do problema h& uma grande
interacdo humana, este tomador de decisdes baseia-se em seu conhecimento
no modelo de otimizagdo, revisando parametros e inserindo corregoes,
aumentando assim a possibilidade de implementacdo deste método de
resolugdo. Quem adaptou esse método pela primeira vez na solucdo de
problemas com roteirizagdo de veiculos foi Krolak.

23

6 — Procedimentos exatos — os algoritmos exatos em problemas de roteirizagéo
e a programacéao do tipo NP-Hard tém sido limitados, com excec¢ao do problema
do caixeiro viajante, que inclui o método de particionamento para a
programacao de pessoal e algoritmos exatos para a programacao de veiculos,

utilizando técnicas de branch and bound e programacao dinamica.

Cunha (1997) classifica os métodos de solugao nas seguintes categorias:

Métodos exatos - garantem uma solugéo 6tima;

Métodos heuristicos — ndo garantem uma solugcdo Otima, mas sub-
otimas, que necessitam de um menor esfor¢co computacional.

Métodos emergentes — compostos de técnicas mais recentes e
avancadas, baseadas em sistemas especializados, métodos de busca ou
interativos. Exemplos deste método sdo as meta-heuristicas como

algoritmos genéticos e busca tabu.

A seguir descreveremos sucintamente 0s principais métodos meta-heuristicos

pesquisados.

Simulated annealing (SA): criada por Kirkpatrik, baseia-se em conceitos da
mecanica estatistica, sendo uma analogia do processo de recozimento dos
soélidos. Nos problemas de otimizacdo, os estados correspondem as solugdes
possiveis, e a energia, a funcdo a ser minimizada. Sendo que os SAs exploram
as solucbes através de geracao sequencial e aleatéria, tendo transicdo por uma
pequena perturbagdo, as melhores solugbes sdo aceitas e armazenadas. H&
também um pardmetro que equivale a temperatura em um sélido, este
parametro € gradualmente reduzido e com ele diminui a probabilidade de
aceitacdo de solucdes piores. Assim sendo, a probabilidade da solucdo se

deteriorar tende a zero conforme cresce o numero de iteracoes.

24

Algoritmo Genético (AG): proposto por Holland, segue principios biolégicos da
reproducdo evolutiva, diferente de outras meta-heuristicas, os AGs néo
exploram solugbes seqiiencialmente e sim populagbes de solugdes, onde a
mais apta serd selecionada para as proximas iteracdes. Os operadores
utilizados nos AGs sao a reproducgdo, que copia os individuos de uma geracao
para outra, crossover ou cruzamento, que recombina caracteristicas, e
mutacdo, que produz pequenas mudancgas nos individuos garantindo uma

diversidade na populacéo e permitindo a exploragao de novas regides.

Busca Tabu (BT): incorpora conceitos de inteligéncia artificial, visando orientar a
busca em espacos de solucdo complexos, simulando usos inteligentes de
memoria, com 0 objetivo de cruzar fronteiras de factibilidade ou otimalidade
local. Suas regras, por serem gerais, sdo utilizadas como guias em outros
métodos heuristicos. A cada iteracdo este algoritmo atualiza uma lista de
solucdes ja visitadas de tal forma que apenas novas alternativas sejam

testadas, aumentando a eficiéncia computacional.

Com base nas caracteristicas dos métodos estudados escolhemos para o
trabalho a heuristica de Clarke & Wright, por ser a mais amplamente utilizada e
também os Algoritmos Genéticos por serem particularmente adaptaveis a
computacdo paralela. Em seguida serdo apresentados com maiores detalhes

alguns destes.

2.2.3. Modelo de Fisher e Jaikumar

Descreveremos a seguir um meétodo tradicional para a resolugédo deste tipo de
problema. Trata-se do modelo desenvolvido por Fisher e Jaikumar (1981) em
sua publicacdo “A Generalized Assignment Heuristics for Vehicle Routing”. Sua
compreensao facilitara o entendimento do problema e dos demais métodos que

utilizaremos neste trabalho.

25

Através deste modelo, pode-se formular um algoritmo que forneca uma solucao
exata para um problema de roteamento de veiculos. Este modelo também pode
vir acompanhado de técnicas de relaxa¢des quando o problema a ser tratado

for mais complexo.

A seguir, apresentaremos todos o0s passos que compdem o modelo descrito,
incluindo a sua formulacéo béasica, que serve como base a diversos métodos de
solucdo. Primeiramente, faz-se necessario descrever algumas condi¢bes para
roteirizacéo definidas pelo modelo:

Nenhum cliente deve deixar de ser atendido;

Todos o0s veiculos iniciam e terminam seu trajeto no mesmo

ponto;

Um cliente deve ser atendido por apenas 1 veiculo;

A soma dos custos dos percursos deve ser minimizada.

A capacidade do veiculo deve ser respeitada

Formulacao

Ser& definida agora a formulagdo do modelo de Fisher e Jaikumar aplicada a
um problema de roteamento de veiculos:

indices:

I,] (1...N) - Endereco do cliente. Local de origem e destino de um percurso;

k (1...M) - Veiculo que realizara o percurso.

Parametros

M - Namero total de clientes de coleta em um dia;

N - Numero total de veiculos disponiveis;

Cj - Custo de percorrer o percurso i ao j. No caso estudado, este custo esta
relacionado a distancia a ser percorrida de i a j;

Qx - Capacidade méxima do veiculo K (peso ou volume);

26

qi- E a demanda do cliente i.

Funcao Objetivo:

. _o & o 0
minz =g ¢c; xa Xijkv
i,j € k 1]

Sujeito a:
3 :
1-aVY, =1 i=2..,N
k=1

Esta restricdo garante que cada ponto (cliente) seja visitado por apenas um
veiculo, tendo em vista que este ndo necessitaria de mais de um veiculo para

coletar suas cargas.

2-3Y, =M, i=1

M
[o]
k=

[LLY

Esta restricdo garante que o ponto de partida (i = 1) receba a visita de todos os
veiculos. Ou seja, todos os arcos formados devem passar pelo ponto i = 1. Esta
condicao é verdadeira, j& que todos os veiculos devem retornar a empresa apos

realizarem suas coletas, de modo a descarregarem suas cargas.

N

o]
3-aqX,£Q, k=1.,M

i=1
Esta restricdo assegura que a quantidade coletada ndo ultrapasse a capacidade
do veiculo. Ou seja, limita a utilizacdo de cada veiculo até sua capacidade

méaxima. Esta restricdo é aplicavel para o caso estudado.

N N
a—aX;=aX; =Yy i=L.,N k=1..,M

j:l j:

[LLY

Esta restricdo garante que os veiculos ndo interrompam suas rotas em um

cliente. Ela relaciona as variaveis binarias X e Y, de modo que se um cliente i

27

for visitado por um veiculo k (Yk = 1), havera apenas um arco chegando e um
arco saindo deste cliente. Caso contrario, todos os arcos receberdo o valor

nulo.

N
o n 1
s_a Xy £lS]-1 "SI {2..N}, k=1..,M
i,fis
Esta restricdo garante que nao sejam formados arcos isolados ou “subrotas”, ou
seja, rotas fechadas isoladas que apesar de respeitarem as restricoes

anteriores nao apresentem continuidade.

Este modelo é muito bom para entender a formulagcdo basica do problema de
roteamento de veiculos, mas a sua aplicacdo pratica se limita a problemas com
poucos pontos a serem visitados e sem nenhum tipo de restricdo operacional.
Para resolver problemas maiores e mais complexos devemos utilizar outros
procedimentos, tais como heuristicas construtivas e meta-heuristicas, que

examinaremos no restante deste capitulo.

2.2.4. A Heuristica de Clarke & Wright

Alguns problemas de roteirizacdo de veiculos sdo extremamente complexos, de
modo que a solucdo Gtima é quase impossivel de ser encontrada. Para tais
problemas, existem muitos modelos heuristicos que conseguem chegar a uma
solucdo ndo exatamente Otima, mas aproximada do problema. Dentre estes,
destaca-se o Algoritmo de Clarke & Wright, um modelo heuristico do tipo saving
(economia) que busca substituir arcos mais caros dentro da rota por arcos de
menor custo. O método a ser apresentado nesta secdo € uma adaptacédo do
algoritmo de Clarke & Wright (1962) publicada em “Scheduling of Vehicles From
a Central Depot to a Number of Delivery Points”, “Operations Reseach”.

Este modelo possibilita a inclusdo de restricbes de janelas de tempo e

28

capacidades dos veiculos, presentes no problema. Segundo Ballou (2001), a
utilizacé@o deste algoritmo em problemas com um numero limitado de restricbes
pode resultar em solugbes préximas a 2% em relagdo a solucéo 6tima. Por fim,
o algoritmo de C&W é uma das técnicas mais conhecidas e utilizadas na
resolucéo deste tipo de problema. Além de ser capaz de gerar solu¢gdes muito
boas, ele é flexivel para lidar com restricbes, e relativamente rapido para
problemas com um namero moderado de paradas (Ballou, 2001).

Assumindo a existéncia de N pontos a serem visitados (lojas), partindo o
veiculo do depdsito 0 e retornando ao mesmo apo6s um ciclo. De momento,
vamos admitir que uma solucao inicial (a pior) seria a existéncia de N veiculos
disponiveis para realizar estas viagens. Cada veiculo viaja do armazém até um
cliente e retorna no fim do expediente. A mostra esta relacdo para 3 nés (2
clientes), sendo o n6 0 representando o Centro de Distribuicdo e os nos i e j 0s
pontos de entrega. A distancia total percorrida pelos dois veiculos é:

D =2xd,, +2xd,,

doi

doj

Figura 2.5 - Configuracao inicial: uma rota para cada ponto (Elaborado Pelo Autor)

Agora, imaginemos que seja possivel eliminar um veiculo do roteiro acima, de

forma que apenas um veiculo percorra os trés nos do problema. Assim, fazendo

29

o veiculo percorrer o trecho 0 — i — j — 0, h4 uma economia de distancia
percorrida, pois ele deixa de viajar um trecho i — 0 e um trecho 0 — j. No entanto,
ele deve percorrer um trecho a mais i — j. Desta forma, a economia gerada por

este novo percurso € representada por:

S, =dy +d,, - d

ij

Figura 2.6 - Configuracéo ap0s a jun¢do dos pontos numa mesma rota (Elaborado Pelo
Autor)

O método de Clarke & Wright baseia-se na computacdo destas economias. As
economias representam o quanto a distancia ou o custo podem ser reduzidos,
agrupando nés (i e j no exemplo) e criando a rota 0 — i — j — 0, que pode ser

destinada a um veiculo.

Para uma rede de N ndés, computam-se as economias para cada par de nds,
ordenam-se as economias obtidas em ordem decrescente, e constréi-se um
roteiro ligando estes pares até concluir todas rotas. A descricdo completa dos
passos da heuristica de Clarke & Wright encontra-se a seguir.

30

Descrigdo do Modelo

Nesta secdo, descreveremos passo a passo a formulacdo da heuristica de
Clarke & Wright. Veremos também que existem duas versdes do algoritmo: uma
paralela e uma sequencial. Apresentaremos a diferenca entre as duas versoes
e definiremos qual serd a versao usada no problema. Definiremos a seguir as
restricbes basicas do problema, tendo em mente que pode haver alteracfes
dependendo da peculiaridade do problema tratado, por exemplo, a restricao de
janelas de tempo. As restricdes basicas do problema séo:

Cada rota inicia e termina no depdésito;

Cada cliente pertence somente a uma rota;

A demanda de cada cliente ndo pode exceder a capacidade do veiculo;
A demanda de todos os clientes de uma rota ndo pode exceder a
capacidade do veiculo;

O tempo total de um roteiro ndo excede a disponibilidade de tempo total
de jornada de trabalho do motorista.

Objetivo: Atender todos os clientes, minimizando a distancia total percorrida e

respeitando todas as restricoes impostas pelo problema.

A descrigdo da heuristica segue, passo a passo, a seguir:

1 — Estabelecer como solucdo inicial para N nés, a formagdo de N rotas
partindo e chegando ao depdésito (esta solucdo, apesar de sempre factivel, € a

mais custosa).

2 — Computar as economias, S; ligando todos os nés i e j. Para i e j = nés
2,3,...,N. Onde c representa o custo de percorrer o trecho i — j, podendo ser a
distancia também; e O representa o depdsito.

31

3 — Ordenar as economias obtidas em ordem decrescente, formando uma

listagem de pares de n@s, com suas respectivas economias.
Neste momento, o modelo de Clarke & Wright pode seguir dois caminhos:
1. Versao Paralela: efetua a melhor unido factivel;

2. Versao Sequencial: realiza a extensdo méaxima de uma rota.

Versao Paralela

4 — Va para o topo da lista de economias.
5 — Se, ligando os pares o resultado for uma rota factivel de acordo com as
restricdbes do problema, adicione esta ligagdo para a solucdo; caso contrério,

elimine-a.

6 — Se ainda houver economias na lista, pule para a préxima e volte ao Passo

5. Se ndo houver mais economias, va para o Passo 7.

7 — Fim.

Versdo Sequencial

4 — Va para o topo da lista de economias.

5 — Se ligando os pares de nés i e j resulta numa rota factivel, de acordo com as
restricdes do problema, faca esta unido.

6 — Defina como rota atual a rota que contém os nés i e j unidos no Passo 5.

7 — Identifique os pontos extremos da rota atual e armazene-os nas variaveis k

e |l. (Por exemplo, apds o Passo 5, k=iel=))

8 — Determine a primeira economia Sy, Sy, S; ou S; da lista que pode ser

32

utilizada para estender a rota atual. Note que a rota a ser unida a rota atual
deve necessariamente comecar com (0, k) ou (O, I), ou terminar com (k, 0) ou (|,
0). Se for impossivel estender a rota atual va para o Passo 10.

9 — Faca a unido dos nos identificados e volte ao Passo 7.

10 — Volte para o topo da lista de economias e encontre a primeira economia
gue gere uma unido factivel. Se nenhuma economia for encontrada va ao

Passo 12.

11 — Facga a unido dos nos identificados e defina como rota atual a rota que
contém esses nos. Volte ao Passo 7.

12 - Fim.

A versdao paralela da heuristica de Clarke & Wright, por utilizar sempre os arcos
de que proporcionam as maiores economias, gera na grande maioria das vezes
solugbes de menor custo que a verséo sequencial. Isto se deve muito pelo fato
da versao sequencial trabalhar uma rota por vez, tentando estica-la ao maximo,
fazendo que, com isso, use ligacbes de nés do final da lista, que geram
menores economias. Por outro lado, esta caracteristica da versdo seqiencial
faz com que ela priorize mais o aproveitamento de cada rota, utilizando em sua

solucao final, as vezes, menos rotas do que a versao paralela.

Ambas as versdes da heuristica podem ser utilizadas cabendo a escolha entre
uma versao ou outra ao usuério. A eficiéncia da versdo adotada varia de acordo
com o tipo de problema. Neste trabalho iremos utilizar a verséao paralela devido

a producdo de solugbes de qualidade superior na maioria dos casos.

33

2.2.5. Algoritmos Meta-RaPS

Segundo Moraga et al., incorporar elementos aleatérios em uma heuristica
pode aumentar seu desempenho. Este procedimento, além de possuir baixo
tempo de execucdo quando comparado a outras meta-heuristicas, € simples

podendo ser utilizado em problemas préticos de roteamento de veiculos.

O Meta-RaPS integra regras de prioridade (ou regras heuristicas), elementos
aleatdrios e amostragem. A cada iteracdo, este procedimento constréi solugdes
viaveis através da utilizacdo de regras de prioridade em uma ordem aleatéria.
Apds um numero de iteracbes, a melhor solugdo encontrada é selecionada. A
aplicacdo do Meta-RaPS em qualquer problema, como um procedimento geral,

consiste em:

1 — Estudar a estrutura do problema e compreender de forma clara as variaveis,

restricdes e a otimizac&o necessarias para resolver o problema;

2 — Encontrar regras heuristicas apropriadas a constru¢do de solucdes viaveis;

3 — Criar uma lista de proximas atividades disponiveis. Usando a heuristica
construtiva e a estrutura do problema, selecionar a préxima atividade. Um
parametro percentual de restricdo pode ser usado como um mecanismo para

diminuir ou expandir a lista de atividades disponiveis;

4 — Modificar a regra de priorizagéo introduzindo aleatoriedade de acordo com
dois critérios: em alguns ou todos os passos da regra de priorizacdo se

possivel; na combinacao de regras de priorizagao;

5 — Rodar a heuristica. A cada iteracdo, a regra de prioridade e sua versao
modificada sdo combinadas produzindo diferentes solugfes viaveis. Apds um

namero de iteragdes a melhor solugdo encontrada é mantida

34

6 — No final de cada iteragdo o procedimento pode adotar uma técnica de

melhoria na solug&o encontrada;

7 — O Meta-RaPS pode utilizar mecanismos para interromper a busca. O critério
mais simples usado é estabelecer um numero fixo de iteragdes depois do qual a
melhor solu¢do encontrada é mantida. Entretanto, pode ser implementado um
critério de parada no caso de nenhuma solucdo melhor sem encontrada depois
de um numero de iteragBes ou parar quando o erro entre as duas melhores

solugdes encontradas atingir certo valor predeterminado.

Este procedimento bastante simples permite que uma série de solucdes
ligeiramente diferentes daquela gerada pela heuristica construtiva original
sejam testadas de maneira bastante rapida. Assim, ampliamos
significativamente o universo de solug¢des exploradas permitindo que resultados

melhores sejam obtidos.

Moraga et al. propdem trés parametros basicos para controlar o funcionamento
do Meta-RaPS:

Prioridade — é um fator que varia de 0 a 1 e representa a probabilidade da
regra heuristica original ser utilizada. Uma prioridade de 0,25 significa que 25%
dos arcos testados para a formacdo de um roteiro serdao escolhidos a partir da
regra heuristica original, que no caso do Clarke & Wright € a lista de economias.
O demais 75% serédo escolhidos aleatoriamente entre a lista restrita criada pelo

algoritmo.

Restricdo — este parametro controla o tamanho da lista restrita na qual o
algoritmo buscara o proximo arco a ser incluido no roteiro. Um valor de 5% para
este parametro significa que a lista restrita contard com todos os arcos cuja
economia seja até 5% menor do que aquela proposta pela regra heuristica (que

representa a maior economia possivel)

35

Melhoria —determina a probabilidade de um procedimento de melhoria ser
utilizado no final de cada iteracdo. Assim, se este valor for de 20%, a cada 5

solucdes geradas, uma serd modificada através de melhorias.

2.2.6. Algoritmos Genéticos

Apesar de fornecer boas solugdes para problemas de roteamento simples,
quando h& maiores restricbes, as heuristicas construtivas ndo chegam a
solugbes tdo boas. Por isso existem as meta-heuristicas que a cada iteragéo
buscam melhorar a solucdo obtida na iteracdo anterior. Uma dessas meta-
heuristicas utilizada na solug¢éo de problemas de roteamento de veiculos e uma
série de outras aplicacdes. Sdo os Algoritmos Genéticos (AGs), que serdo
tratados nesta sec¢éo. Os AGs foram escolhidos como método para solugéo do
problema tratado dentre as demais opc¢des vistas no item 1 principalmente pela

sua compatibilidade com a computagéo paralela como veremos a seguir.

2.2.6.1. Histoérico

Nos anos 50, cientistas buscaram solugbes para problemas evoluindo uma
populacéo de solugBes possiveis através de conceitos da genética e da selecéo
natural. JA nos anos 60, Rechenberg criou um método que melhorava
pardmetros reais de mecanismos, chamado “estratégias de evolu¢do”. Em
seguida surge a “programacao evolutiva”, onde solug¢des representadas como
maquinas de estado-finito, eram evoluidas através da mutacado, para escolher
ao final a mais adequada. John Holland nos anos 60, baseado no mecanismo
de adaptacdo da natureza, cria os Algoritmos Genéticos, baseado em um
quadro tedrico para controlar essas adaptacdes, utilizando, crossover, mutacao

e inversdo e uma populacao de cromossomos.

36

2.2.6.2. Evolugéo e Terminologia

De acordo com Mitchell M. (1996), a evolucdo vem sendo usada para a
resolucdo de diversos problemas e para a termologia na computacao, pois a
natureza fornece a resolucéo de problemas complexos que buscam respostas
entre inumeras solugcdes e condicdes ambientais diferentes. Em um
comparativo com a biologia, as varias alternativas sdo seqiiéncias genéticas e a
solucao, individuos adaptados. O processo de evolugéo traz solu¢des originais
para problemas complexos, e a utilidade de cada individuo dependera de sua

adaptacéo.

Todos os seres vivos tém células que possuem cromossomos. Nos AGs estes
significam a possivel resposta a um problema em forma de uma seqiéncia de
bits, podendo ser dividido em genes ou blocos com funcionalidades diferentes
no DNA, que codificam um elemento da possivel solucdo. A variedade de

possiveis caracteristicas sdo chamadas alelos, 0 ou 1.

2.2.6.3. Elementos Basicos de um Algoritmo Genético

O algoritmo genético tem como caracteristicas principais, populacdes de
cromossomos, selecao pela utilidade, crossover reproduzindo novos individuos,
e mutacdo aleatéria. A sequéncia de bits caracteriza um cromossomo sendo
que cada localizacdo do cromossomo possui dois possiveis alelos, 0 ou 1. O
AG processa em sequéncia as populacdes de cromossomos, substituindo uma
populacdo pela outra. Existe uma fungdo que da a cada cromossomo um valor.
A utilidade de um cromossomo depende de como ele consegue resolver o
problema, sendo a melhor solugdo aquela que apresentar maior utilidade. Estes

elementos seréo discutidos em maior detalhe nos préximos itens.

37

Codificagao — é preciso delimitar os parametros do problema em simbolos ou
genes, cujo comprimento pode ser constante ou dindmico, codificando uma das
solucdes possiveis dentro de um espaco de solugdes. Esses simbolos, que
podem ser numeros binérios, formam uma sequéncia de bits, ou letras e
valores. Os Ags, geralmente, sdo binarios e constantes, seus parametros estao

no mesmo espaco de valores, e em genes de mesmo tamanho.

Funcdes de Utilidade —Os AGs sao aplicados para otimizar func¢des, onde o
objetivo é encontrar um conjunto de parametros que maximize, por exemplo,
uma determinada funcdo multivariada complexa. sdo utilizados também em
casos nao-numeéricos, em aminoacidos para buscar a melhor estrutura de uma
proteina dentre uma populacdo de solu¢cdes. Em suma, um algoritmo genético

busca sequéncias adaptadas, de acordo com sua funcao utilidade.

Operadores — existem trés tipos principais de operadores no algoritmo
genético, selecdo, crossover e mutacdo. A selecdo elege individuos de uma
populacao para se reproduzirem, o mais adaptado dentre o espacgo de solugdes
possiveis serd selecionado. O operador de crossover escolhe um local no
cbédigo genético e troca as sequUéncias, misturando dois pais e criando um
descendente, e trocando bits de uma seqliéncia em um Cromossomo
aleatoriamente, a mutagéo, ocorre de acordo com uma pequena probabilidade,
por exemplo, 0,01%.

2.2.6.4. Estrutura de um Algoritmo Genético Basico

Ao definir um problema com uma seqiéncia de bits representando as solugdes

possiveis, um algoritmo genético basico funcionaria da seguinte maneira:

1 — Gerar uma populacdo aleatéria com cromossomos de tamanho n;

38

2 — Nesta populacao para cada cromossomo X, calcular a funcdo de utilidade
f(x);

3 — para criar n descendentes repetir as seguintes etapas:

- Na populacao atual, escolher os cromossomos pais de melhor utilidade.

- Em um ponto aleatério, cruzar a sequéncia de bits dos pais, criando
descendentes, dada uma probabilidade Pc ou taxa de crossover. Caso nao
ocorra crossover, os descendentes serdo idénticos aos pais.

- Em alguns casos, os AGs usam uma taxa igual ao numero de pontos onde
acontece cruzamento assim ha possibilidade de crossover em pontos multiplos,
nao em apenas um ponto.

- Com o0s dois descendentes fazer mutagcbes com probabilidade Py
(probabilidade de mutacao) em cada ponto das seqiéncias geradas.

- Colocar esses descendentes criados na nova populacéo.

4 - Adotar essa nova populacdo no lugar da antiga.

5 - Repetir a segunda etapa.

Cada iteracdo representa uma geracdo, sendo que ao termino da rodada,
encontram-se individuos com maior utilidade, adaptados nesta populacao.
Levando-se em conta que a grande aleatoriedade criara comportamentos
diferenciados na populacdo, para a resolucdo do mesmo problema, € usual,
colher resultados estatisticos de muitas rodadas diferentes. Além desse
procedimento existem detalhes como o tamanho da populacédo e a escolha das
taxas de crossover e mutacdo. Escolher corretamente esses parametros levara

a um maior sucesso do algoritmo na resolucao do problema.

2.2.6.5. Algoritmos Genéticos vs. Métodos de Busca
Tradicionais

Na ciéncia da computacédo o termo busca tem diferentes significados, usamos
esse termo até agora para descrever o que os AGs fazem, porém existem trés

sentidos para a palavra busca. Na Busca de Caminhos o problema é definir as

39

acOes que a partir de um estado inicial levam eficientemente ao objetivo, ja na
Busca por Dados, o problema é achar informagfes que estdo na memodria.
Finalmente h4 a Busca de solugbes que visa encontrar dentre solugdes
possiveis a melhor solucdo. Neste tipo de busca € que serd utilizado o algoritmo
genético.

Existem outros métodos que também solucionam problemas do tipo “Busca de
Solugbes”, como simulated annealing, busca tabu e hill climbing. De um modo
geral, as técnicas de “Busca de solu¢gbes” funcionam do seguinte modo: (1)
geracdo de solugbes candidatas; (2) avaliacdo destas por sua utilidade; (3)
escolha das melhores; (4) usando um operador, novas variantes sdo produzidas

sobre o conjunto restante.

A técnica de algoritmo genético difere das outras, pois combina elementos
como busca macicamente paralela, selecdo com mutacdo e crossover. Esses
elementos podem aparecer em outras técnicas isoladamente mais nao nesta
combinacdo completa, por isso parece ser um meétodo bastante adequado para
se resolver o problema de roteirizacdo do Grupo varejista proposto neste
trabalho.

2.3. COMPUTA(;AO PARALELA
A computacdo paralela é uma técnica utilizada para proporcionar alta
capacidade de processamento e desempenho computacional através do uso de
multiplos processadores trabalhando na mesma tarefa. Existem diversos niveis
de paralelizagcdo, cada um deles correspondendo a uma infra-estrutura de
hardware propria com caracteristicas de desempenho e custos especificos.
Além disso, o software utilizado na computacdo paralela deve ser adaptado
para levar em conta a distribuicdo de tarefas entre os varios processadores.

Nesta secao, discutiremos alguns dos principais aspectos desta abordagem

40

bem como o seu potencial para ser utilizada na solu¢ao do problema tratado.

2.3.1. Introducéo e Conceitos Béasicos

Em 1946, surgiu o primeiro computador digital eletrbnico, que estabeleceu os
conceitos béasicos da computagdo. Em seguido o modelo de Von Neumann
formado por processador, memoéria e dispositivos de E/S que executa
sequencialmente cada ordem dada pela unidade de controle. A partir dai, novas
tecnologias foram criadas, como a computacdo paralela e as redes de
computadores. O processamento paralelo faz a divisdo de uma aplicacao para
varios elementos através de comunicagdo e sincronismo o0 que aumenta o
desempenho do sistema. A computacdo paralela possui alguns conceitos
basicos cuja compreensdo nos ajudara no decorrer deste trabalho, os quais
serdo descritos a seguir.

Paralelismo e Concorréncia — ocorre concorréncia quando dois ou mais
processos tém inicio no mesmo instante e ndo concluem suas atividades, o que
pode acontecer tanto em um sistema com um processador quanto com
multiplos. Se um processo ocorre em paralelo, ele estara usando mais de um
processador no mesmo intervalo de tempo. Dentro da computacao existem trés
estilos de programacéo, a sequencial que realiza uma tarefa depois da outra, a
concorrente que inicia varias tarefas mesmo que a anterior ndo tenha acabado,

e a paralela que inicia e executa as tarefas ao mesmo tempo.

Granulacdo — Para definir o tipo de plataforma, porte e quantidades de
processadores onde se aplicara o paralelismo é necesséario saber o tamanho
das unidades de trabalho submetidas aos processadores, ou seja, 0 nivel de
granulacdo, que pode ser fina, media e grossa. A Granulagdo Fina usa o
paralelismo para operagbes com processadores pequenos e simples, em
grande quantidade. A Granulacdo Média situa-se entre a fina e a grossa. Ja a

41

Granulagdo Grossa utiliza o paralelismo em processos e programas, com

processadores grandes e complexos em pequena quantidade.

Speedup e Eficiéncia - Através do paralelismo, o processamento ganha
velocidade, sendo assim, para verificar a qualidade dos algoritmos paralelos ha
duas medidas importantes, speedup e eficiéncia. O speedup é o aumento de
velocidade ocorrida comparando-se a velocidade de p processadores com a de
um na resolugdo do mesmo problema. O uso de uma granulacdo inadequada,
ou partes do cédigo sendo sequenciais, causam uma sobrecarga nha
comunicacdo entre processadores e consequentemente uma diminuicdo no
valor de speedup ideal, que deveria tender a p. A eficiéncia é a medida que
trata dessa relacdo entre o speedup e o numero de processadores. Quanto
mais processadores sdo utilizados em paralelo, menor sera a eficiéncia de
processamento. No caso ideal (speedup = p), a eficiéncia seria maxima e teria
valor 1 (100%).

2.3.2. Niveis de Paralelizacédo

A paralelizacdo pode ocorrer basicamente em trés niveis distintos:

- Estacdo com multiplos processadores: um computador conta com VAarios
processadores integrados na sua arquitetura, com compartiihamento de
memoria e barramento Gnico. E a forma mais cara de computacio paralela,

porém, tem operacgédo facil e melhor desempenho em tarefas seqienciais.

- Cluster: sistema com dois ou mais computadores, cujo objetivo é fazer com
que todo o processamento da aplicagdo e realizacéo de tarefas seja distribuido
aos computadores, de tal forma que ao usuario, pareca um Unico sistema
respondendo. Pode ser montado com qualquer tipo de computador, conectados

através de uma rede, o que permite que sejam montados a custos mais baixos,

42

além de ter escalabilidade, e alto controle de desempenho.

- Processamento Distribuido: permite maior paralelizacdo, pois o0s
computadores ndo precisam estar conectados o tempo todo e nem controlados
de forma centralizada. O problema é quebrado em inUmeros sub-problemas que
sdo enviados para computadores independentes, processados e finalmente
devolvidos para o ponto de origem que ira consolida-los. Esta paralelizacao é a
mais barata, ndo requer investimento em hardware e ndo tem limite de
processadores para se trabalhar. No entanto, h4 demora na obtencdo de

resultados, e impossibilidade de comunicagéo e controle dos processos.

Para os fins deste trabalho, os clusters se mostram como a op¢ao mais pratica
por apresentarem custos mais reduzidos do que 0s supercomputadores e
permitirem um alto grau de controle sobre os processos. A seguir iremos

detalhar melhor o funcionamento e os tipos existentes de clusters.

2.3.3. Clusters

O uso de clusters eleva a confianga, distribuicdo de carga e capacidade de
processamento. Cada computador de um cluster € denominado n6. Todos o0s
nos formam uma rede, permitindo acréscimo ou retirada de um nd, sem
interromper o funcionamento. O sistema operacional usado nos computadores
deve ser de um mesmo tipo, ou seja, ou somente Windows, ou Linux, ou BSD,

etc. Isso porque existem particularidades em cada sistema operacional.

Clusters sdo usados quando os conteludos sdo criticos ou quando 0S servigos
tém que estar disponiveis 0 mais rapido possivel. Os pesquisadores,
organizacbes e empresas estdo utilizando os clusters porque precisam
incrementar sua escalabilidade, gerenciamento de recursos, disponibilidade ou

processamento num nivel super-computacional e a um custo razoavel.

43

Tipos de Clusters

Segundo Pitanga, M (2004), podemos classificar os clusters em alguns tipos

bésicos que veremos a seguir.

Cluster Beowulf:
Estes clusters sdo usados para computagdo cientifica ou andlises financeiras,
tarefas tipicas, que exigem alto poder de processamento. O Beowulf foi
fundamentado em 1994, pela NASA, para processar as informac¢des espaciais.
Desde entdo, empresas (como HP e IBM) e universidades (como a brasileira
Unesp e USP) vém construindo clusters deste tipo, com cada vez mais nos.

O Beowulf tem um sistema dividido em um né controlador denominado front-
end (ou né mestre), cuja funcao é controlar o cluster, monitorando e distribuindo
as tarefas, atua como servidor de arquivos e executa o elo entre 0S USUArios e 0
cluster. Os demais ndés sdo os clientes, backends, ou nds escravos, e
processam as tarefas enviadas pelo n6 mestre. Nestes nés nado existe a
necessidade de teclados e monitores, e eventualmente até de discos rigidos
(boot remoto), alem de poderem ser acessados via login remoto (telnet ou ssh).

Front-End

Switch

—

Mos

Figura 2.7 - Esquema simples de um Cluster Beowulf (elaborado pelo autor)

44

Este Cluster permite a construcdo de sistemas de processamento que podem
alcancar altos valores de gigaflops (um gigaflops equivale a 1 bilhdo de
instrucdes de ponto flutuante executadas por segundo). Isso com o0 uso de
computadores comuns e de um sistema operacional com codigo-fonte livre,

além de equipamentos comuns as redes.

Cluster para Alta Disponibilidade (High Availability - HA) — Para que o
sistema ndo desative este modelo de cluster possui protecao e deteccao
de falhas, replicando servigos e servidores, através da redundancia de
hardware e reconfiguracdo de software em diferentes nds. Caso haja

falha em um no, aplicagfes e servigos estardo disponiveis em outro.

Cluster para Balanceamento de Carga (Load Balancing) — este cluster
integra seus nos para que todas as requisicées sejam distribuidas entre
eles. Todos 0s nos sdo responsaveis por controlar os pedidos. Se um n6
falhar, as requisicbes sao redistribuidas entre os ndos disponiveis no

momento, baseados em um escalonador e um algoritmo proéprio.

Cluster Combinado, HA & Load Balancing — E a unifio das caracteristicas
dos clusters de Alta Disponibilidade e de Balanceamento, aumentando
assim a disponibilidade e escalabilidade de servigos e recursos, evitando
paradas criticas. Suas caracteristicas s&o o redirecionamento dos
pedidos dos nds que falham para os nés reservas, melhoria na qualidade

servico e disponibilizacdo de uma arquitetura escalonavel.

2.3.4. Biblioteca de Paralelizagcdo MPI

As bibliotecas de paralelizagdo sao a alma do desenvolvimento dos aplicativos

para os clusters, pois séo elas que possibilitam que um mesmo aplicativo utilize

45

0S recursos computacionais de mais de uma maquina ao mesmo tempo,
através dos protocolos de comunicacdo. O cerne das aplicacdes paralelas é a
utilizacdo de mais de um processador para rodar a mesma aplicacdo, sendo
gue para se obter isso, € necessario que esses processadores se comuniquem,
0 que ocorre basicamente de duas formas: através de memdria compartilhada

ou da troca de mensagens.

A memodéria compartilhada é utilizada quando ha mais de um processador em
uma maquina. Para os usuarios de maguinas pessoais e a maioria das
empresas, ndo € comum existrem computadores com mais de dois
processadores, devido ao seu alto custo. Dessa forma, esse tipo de paralelismo
ndo é tdo comum aos usuérios. A memoria distribuida é utilizada quando ha
mais de uma maquina trabalhando em conjunto, ou seja, cada maquina é
independente, com processador e memoria propria como no caso dos clusters.

Por isso, € necessario que troquem informacdes entre si, 0 que é feito via rede.

As bibliotecas de paralelizagbes possuem um conjunto de instrugbes que
permite que um computador se comunique com 0 outro, sendo 0S processos
distribuidos e sincronizados. O MPI (Message Passing Interface) é uma das
bibliotecas mais utilizadas hoje na programacédo paralela, e sera adotada na
construgdo dos algoritmos neste trabalho. Maiores detalhes sobre os tipos de

biblioteca de paralelizacdo e especificamente o MPI se encontram no Anexo A.

2.4. ALGORITIMO GENETICO PARALELO

Como o problema de roteamento de veiculos com restricdes operacionais € um
problema de dificil solugdo, podemos utilizar as técnicas de computacao
paralela para aumentar a capacidade de processamento e assim chegar a
solucdes de melhor qualidade. Os algoritmos genéticos tém se mostrado

bastante adequados para execucdo em maquinas paralelas devido ao alto grau

46

de paralelizacdo intrinseco a sua estrutura. Existem dois tipos de algoritmos
genéticos (AGs) paralelos que podem explorar os ganhos de escala desta
abordagem de forma bastante eficiente: AGs mestre-escravo (ou global) e AGs
de mdltiplas popula¢des (também conhecidos como modelo de ilhas).

A caracteristica basica de um AG paralelo é a divisdo da tarefa de avaliacédo
das populagbes para os diferentes processadores disponiveis. A tarefa a ser
paralelizada pode ser tanto a avaliagdo da funcdo utilidade de cada individuo de
uma populagdo unica, como a avaliacdo de uma sub-populacao inteira alocada
a cada n6. Em ambos os casos existem alguns fatores importantes a serem

avaliados para o bom desempenho do algoritmo.

Um fator critico para qualquer AG é a troca de material genético de qualidade
entre as solugbes. Essa troca é influenciada tanto pela taxa de crossover
guanto pela sele¢cédo de solugbes que irdo se reproduzir. Se a selegcéo for muito
intensa a populagéo ir4 convergir muito rapido e ndo havera tempo suficiente
para ocorrer uma mistura adequada entre os membros da populagéo. Quando
isso ocorre, o0 AG pode convergir para uma populacdo sub-6tima. Por outro
lado, se a selecdo for muito baixa, o crossover pode destruir qualquer boa
solugéo que tenha surgido e nao tenha tido tempo de se reproduzir. Nesse caso

o AG provavelmente ndo encontrard uma boa solugéo.

Além de decidir sobre os valores adequados para os parametros basicos do
AG, na versao paralela é necessério escolher as taxas de migracéo, tamanho
das sub-populacgdes, topologia de conexdes entre sub-populacdes e frequéncia

ou agendamento de migragoes.

2.4.1. AGs Paralelos Mestre-Escravo

O mestre escravo € o tipo mais simples de AG paralelo. Essencialmente ele é

47

igual a um AG sequencial que distribui o calculo da fung&o objetivo ou avaliagéo
da utilidade para os nos disponiveis. O mestre armazena toda a populagéo e

cada no escravo avalia uma fracdo dos individuos.

I
4

Figura 2.8 - Topologia basica de um AG Mestre-Escravo (adaptadé de Cantu-Paz,
1999)

Segundo Cantu-Paz, os AGs mestre-escravo foram propostos por Grefenstette
(1981), mas nao tem sido largamente utilizados. No entanto, existem algumas
aplicacdes bem sucedidas, como no caso de Fogarty e Huang (1991) onde os
AGs séo utilizados para evoluir regras para uma aplicacao de balanceamento.

As operagOes de crossover e mutacdo podem ser paralelizadas. No entanto
essas operacOes sao tdo simples que os ganhos obtidos com a paralelizagéao
podem ser perdidos com o aumento do trafego de rede. O mesmo ocorre

quando paralelizamos o processo de selecao de individuos.

Finalmente podemos dizer que o AG paralelo mestre-escravo ou global é um
método de facil implementacdo e pode ser um método eficiente quando requer
calculos demorados. Além disso, 0 método ndo altera a estratégia de busca e,
portanto, podemos aplicar toda a teoria existentes para os AGs simples.

2.4.2. AGs Paralelos de Multiplas Populacfes

O segundo tipo de AG que pode ser utilizado para aproveitar os ganhos da
computacdo paralela é o de multiplas populacdes. Eles também sdo chamados

48

de modelo de ilhas, e consistem de algumas sub-populacdes que
freqientemente trocam individuos segundo, Cantd-Paz (1999). Este é
provavelmente o tipo mais popular de AG paralelo, mas ele é controlado por
muitos parametros e a compreensao de como cada um deles afeta o

desempenho do algoritmo em uma dada instancia € muito trabalhosa.

Um dos aspectos mais importantes € o papel da troca de individuos entre as
sub-populagfes. Esta troca é chamada de migracdo e € controlada por trés
parametros: (1) a taxa de migracdo, numero de individuos que vao migrar, (2)
uma agenda de migracéo, que determina quando as migracdes irdo ocorrer, e

(3) a tipologia de comunicacéo entre as sub-populacgdes.

Sub-populagdes

Figura 2.9 - Esquema de um AG paralelo de mdltiplas populégﬁes. As sub-populacdes
trocam individuos com seus vizinhos neste esquema (adaptado de Cantu-Paz, 1999)

As migracOes afetam a qualidade da busca e a eficiéncia do algoritmo. Por
exemplo, migracOes frequentes resultam em uma massiva troca de material
genético, potencialmente Util, mas afetam negativamente o desempenho devido
ao custo de comunicagdo. O mesmo ocorre com tipologias densamente

conectadas, onde cada sub-populagéo se comunica com muitas outras.

O objetivo final dos AGs paralelos é achar solu¢cdes rapidamente, sendo
necessario, portanto, achar um balanco entre o custo de usar migragdo e o

aumento das chances de se achar boas solugdes.

49

3. MODELAGEM DO PROBLEMA

No capitulo 1 apresentamos a empresa e seus processos e descrevemos 0
problema que estamos nos propondo a resolver. No segundo capitulo foi feita
uma ampla revisdo da bibliografia sobre o tema, o que tornou possivel a
escolha de alguns métodos de solugdo que se mostraram mais apropriados ao

problema, bem como a sua formulacao.

Passaremos agora a combinar o conteldo destes dois capitulos para construir
um modelo capaz de proporcionar uma representacao fiel das operagdes do
grupo e ao mesmo tempo permitir que este possa ser resolvido para que sejam
obtidas melhores solucées para o problema de abastecimento do que as

utilizadas atualmente pela empresa.

Como foi visto no Item 1, o processo de abastecimento é composto
basicamente por 3 etapas principais — recebimento dos pedidos, roteirizacéo e
transporte para as lojas. O foco deste trabalho, como ja foi dito anteriormente,
esta justamente na segunda etapa, a de roteirizagdo. No entanto, para que esta
possa ser resolvida a contento, sdo necessarias informacdes provenientes das
duas etapas adjacentes. Na pratica existe uma interacdo dindmica entre as
informacdes necessérias e disponiveis sobre um determinado processo e a
forma como este pode ser modelado para sua resolucdo. Neste capitulo
estaremos detalhando como o modelo foi concebido e no proximo sera
explicado como os dados necessarios foram levantados e adaptados ao

mesmo.

50

@ (F—
Recehimento .| Roteirizacio | Transporte
dos pedidos " & | para as lojas

Figura 3.1 - Processo de abastecimento simplificado (elaborado pelo autor)

3.1.CLASSIFICACAO DO PROBLEMA

O primeiro passo na construcdo do modelo é avaliar seus principais
componentes e decidir como cada um deles sera abordado. No Item 2.1.3
estudamos as possiveis variacdes dos problemas de roteirizacdo de veiculos
segundo uma série de aspectos. De acordo com a classificacdo proposta por
Assad (1998) podemos formular o problema da seguinte maneira:

Demanda
O atendimento da demanda deve ser total, ou seja, nenhum dos clientes
pode deixar de ser atendido e todo o volume solicitado deve ser entregue
para cada um deles;
Os produtos que compdes os pedidos serdo tratados como sendo iguais,
considerando-se apenas 0 volume que ocupam e nao o tipo de
mercadoria;
N&o havera prioridade de clientes de tal forma que o atendimento de
todos eles seja igualmente importante;
Serdo consideradas apenas entregas, ndo havendo coletas ou backhaul;

A demanda € previamente conhecida e nao aleatoria;

o1

Todas as entregas serdo consideradas Unicas e nao periédicas de modo

gue a cada dia os pedidos devem ser formulados novamente.

Frota de Veiculos

A frota utilizada é heterogenia. Serdo considerados no modelo os 3 tipos
de veiculos mais utilizados na préatica, com custos e caracteristicas
diferentes;

o Carreta— com capacidade de 28 paletes;

o Truck — com capacidade de 14 paletes;

o Leve —com capacidade de 7 paletes
Os veiculos possuem restricdo de capacidade e todos eles devem partir
do CD e retornar para 0 mesmo no final de cada roteiro;
N&do h& restricbes de carregamento dos veiculos no CD, nem
incompatibilidade entre veiculos e carga (uma vez que ndo estamos
considerando cargas liquidas ou refrigeradas no escopo deste trabalho);
H& um namero variavel (ilimitado) de veiculos que podem ser utilizados;
Alguns veiculos ndo podem visitar todas as lojas devido a restricdes
operacionais como altura das docas, falta de espago para manobra e
restricdes de trafego urbano.

Pessoal
Sera considerada uma jornada de trabalho maxima de 10 horas havendo
a possibilidade desta ser ultrapassada apenas nos casos onde seja
impossivel atender uma determinada loja no tempo disponivel;
O nuamero de motoristas sera considerado ilimitado;
O horario de inicio da jornada sera flexivel, de acordo com a
necessidade de cada roteiro;
N&do havera tempo extra de descanso entre as viagens (este sera

considerado no tempo de descarga que é superestimado).

52

Programacao
Serdo consideradas janelas de recebimento rigidas para as entregas, ou
seja, se o caminhdo chegar antes do inicio da janela devera aguarda-la e
se chegar depois ndo podera efetuar a entrega;
O tempo de descarga sera fixo em 1,5h;

O centro de distribuicdo trabalha 24h por dia.

Informacdes
N&o estardao sendo utilizados dados geograficos e de redes viarias;
As lojas serao localizadas de acordo com suas coordenadas de latitude e
longitude (quando estas ndo estiverem disponiveis serd utilizado o
centréide da cidade onde as mesmas se situam);
Os tempos de viajem serdo calculados a partir da distancia entre os
pontos de origem e destino e da velocidade média dos caminhdes
naquele trecho (funcéo da distancia);

Os detalhes de como todas estas informagOes foram obtidas e processadas

encontram-se no Capitulo 4.

3.2. PRINCIPAIS PARTICULARIDADES DO MODELO

Além das caracteristicas discutidas na se¢ado anterior, 0 modelo proposto neste
trabalho apresenta duas diferencas importantes quando comparado aos
modelos encontrados na bibliografia, que serdo discutidas a seguir.

A primeira delas é a forma como o custo de transporte € considerado. Na
grande maioria dos casos estudados, este custo € diretamente proporcional a
distancia percorrida pelos veiculos durante o processo de entrega. No entanto,
como no Grupo o abastecimento é feito por transportadoras terceirizadas, o

custo ira depender dos contratos e ndo das distancias. Basicamente, cada loja

53

esta situada numa regido para a qual existe um preco fixo de atendimento
dependendo do modelo de veiculo utilizado. Este preco independe do peso ou
volume transportado e da distancia ou tempo do percurso. A forma como esta
caracteristica particular foi incorporada aos métodos de solugdo sera discutida

em mais detalhes nos proximos capitulos.

Outra diferenca significativa entre o modelo proposto e os encontrados na
literatura é a possibilidade de que uma loja seja atendida por mais de um
roteiro. Esta flexibilizagdo do modelo se mostrou necessaria uma vez que 0s
volumes transportados para as lojas do Grupo sdo frequentemente superiores a
capacidade dos caminhdes.

Os modelos de roteirizacdo tradicionais assumem que a demanda de cada
ponto de entrega € menor do que a capacidade dos veiculos. Caso
eventualmente esta demanda seja superior, o problema é resolvido com o envio
de caminhdes totalmente ocupados exclusivamente para aquela loja até que a

demanda remanescente seja inferior a capacidade dos caminhdes.

f@i@

Figura 3.2 - (a) Apenas um roteiro pode passar por cada loja; (b) Possibilidade de dois
roteiros passarem pela mesma loja (elaborado pelo autor)

A possibilidade de mais roteiros passando pela mesma loja amplia
significativamente o niumero de solugdes viaveis no espaco de solugdes e torna

mais trabalhosa a otimizacdo dos roteiros. No entanto, esta flexibilidade

54

adicional permite que solugbes mais vantajosas sejam testadas ja que a
capacidade ociosa dos caminhdes em diferentes roteiros pode ser utilizada para
atender a demanda de uma loja sem que haja a necessidade do envio de um

veiculo a mais para a mesma.

Mesmo assim, como serdo testados diferentes métodos de solucdo para este
modelo, em alguns casos tivemos que trabalhar com a restricdo original devido

a forma como o método trabalha.

No caso da heuristica construtiva de Clarke and Wright, a proibicdo de multiplas
visitas a uma mesma loja foi utilizada tal como a literatura sugere, devido
dificuldade de se adaptar o algoritmo para ignorar esta restricdo, sem que sua
gualidade seja prejudicada. Ja para o Meta RaPS foi possivel trabalhar com
uma certa flexibilizacdo desta restricdo. Apesar de ndo permitir que multiplos
roteiros abastecam uma mesma loja, 0 que pode ser implementado foi uma
variacdo dos veiculos que fazem a entrega exclusiva antes que a carga
remanescente seja roteirizada. Desta forma, pudemos obter diferentes
combina¢gfes de demanda que s&o atendidas na segunda fase do algoritmo
obedecendo a regra de construgéo da heuristica.

Finalmente, nos Algoritmos Genéticos, tanto na versao sequencial quanto na
paralela, a possibilidade de mais de um roteiro atender a mesma loja pode ser
implementada gracas a grande flexibilidade que este método proporciona na
modelagem e tratamento de restri¢coes.

No proximo capitulo estaremos descrevendo como as informacgfes necessarias

a resolucéo deste modelo foram obtidas e adaptadas.

55

4. LEVANTAMENTO DE DADOS

Uma etapa critica na solugdo de qualquer problema consiste na obtengédo e
tratamento dos dados necessérios a sua formulacdo. Na pratica, a solucao
obtida por um modelo nunca sera melhor do que a qualidade dos dados de
entrada.

Neste capitulo iremos discutir os principais dados necessérios a solucdo do
problema de roteamento dos veiculos que fazem o abastecimento das lojas da

empresa, como 0s mesmos foram obtidos, tratados e inseridos nos modelos.

4.1.DISTANCIAS

Para se representar de maneira precisa a rede de lojas, de modo que
possamos avaliar as distancias percorridas nas rotas propostas, bem como o

tempo necessario para percorré-las, é necesséario conhecer a localizacao de

cada ponto.

As coordenadas de cada uma das lojas e do centro de distribuicdo em questéo
(latitude e longitude) foram obtidas a partir dos seus respectivos endere¢cos com
o0 auxilio de um site de localizagdo (www.apontador.com.br). Para algumas lojas
cujos enderecos o software ndo conseguia encontrar, as coordenadas foram
determinadas a partir do centroide da cidade. Estes dados j& estavam
disponiveis em uma planilha de cadastro das lojas e centros de distribui¢éo,
que além destas informagfes, contém o nome da loja, telefone, endereco

completo, CNPJ, entre outras.

56

-44

-45 T
© -46 y
E 47
2 7 ¢ Lojas
g . .
5 -48 . f s CD
-

245 24 -235 23 -225 -22 215 -21
Latitude

Figura 4.1 - Localizacéo das lojas e CD do Grupo (elaborado pelo autor)

A Figura 4.1 apresenta a latitude e longitude levantada para cada uma das lojas
incluidas no escopo do trabalho. Como podemos perceber, existe um grupo de
lojas mais afastado que foi mantido no problema por ser atendido pelo CD em
guestao e estar localizado dentro do estado de Sao Paulo. Por estas lojas
apresentarem uma distancia mais elevada, o tempo de viagem também cresce
bastante. Em alguns casos na prética este tempo ultrapassa a jornada de
trabalho do motorista, o que nao deveria ser permitido. Para lidar com este fato
no modelo, em cada um dos métodos de solugdo propostos, serdo feitas
adaptacdes para permitir que as restricdes de tempo maximo possam ser
violadas caso seja impossivel atender uma determinada loja neste intervalo,

viabilizando a solucéao do problema.

De posse das coordenadas podemos calcular a distancia entre todos os pares
de pontos que compdem a rede. Caso estas coordenadas fossem a posicao (X,
y) dos pontos sobre um plano poderiamos obter as distancias calculando

apenas o comprimento da reta que 0s une como sendo:

%zJ&'My+@FVJZ

57

No entanto, como as coordenadas estdo em latitude e longitude, devemos
determinar o comprimento do arco que une os dois pontos sobre a superficie da
Terra. Este comprimento pode ser obtido através da seguinte equacao:

d; =6377>acos(sen(lat;)>sen(lat,)+ cos(lat;) >cos(lat,)>cos(abs(lon; - lon,)))

Onde:
6377 € o raio da Terra em quildmetros;
lat é a latitude de um ponto expressa em radianos;
lon é a longitude de um ponto expressa em radianos;
sen € a fungéo seno;
cos é a funcdo cosseno;
acos é a fungéo arco cosseno;

abs é o valor absoluto de um nimero;

Uma vez determinadas as distancias dos arcos que unem 0s pontos da rede
dois-a-dois, temos uma boa aproximacao da distancia real a ser percorrida para
ir de um destes pontos ao outro. No entanto esta distancia real, na pratica, ir&

depender das vias terrestres disponiveis entre 0s pontos.

Para corrigir esta distorcdo entre o valor tedrico e o valor pratico das distancias
foi feita uma analise com base nos dados histdricos de distancia percorrida e do
resultado da equacdo anterior. As diferencas obtidas podem ser vistas no

gréfico da Figura 4.2.

58

y = 1,6097x "¢

R?=0,0812

N
6]
*

=
(63}

Fator de Correcédo

o
(63}

0 500 1000 1500 2000 2500 3000 3500
Distancia (Km)

Figura 4.2 - Correlagéo entre o fator de correcéo e a distancia (elaborado pelo autor)

Como podemos observar, para distancias pequenas, a razdo entre as duas
distancias apresenta uma variabilidade muito grande de acordo com o trajeto
percorrido. Ja para distancias maiores este fator tende a um valor médio e sua
variabilidade diminui. Com o intuito de representar este comportamento de uma
maneira que tornasse mais realistas as distancias efetivas que usaremos nos
modelos de solugdo tentamos ajustar diversos tipos de curva que
representassem esta distribuicdo. A curva que pode ser vista no gréfico foi a
gue melhor se ajustou aos pontos, mas mesmo assim de maneira muito pobre,
apresentando um r? apenas 0,08. Desta formas optamos por utilizar um fator de
correcao fixo de 1,27 que representa o valor médio dos numeros analisados.

A maneira mais acurada de se fazer uma estimativa das distancias seria utilizar
os dados historicos de distancia percorrida para cada combinagédo de pontos.
No entanto, estes dados sO existem para uma fracdo infima dos 23.005 (215
combinados dois a dois) arcos necessarios para representar a rede. Outra
maneira seria obter esta distdncia por meio de um software de calculo da
distancia minima entre dois pontos que utiliza um banco de dados de

59

informacdes geograficas incluindo mapas viarios detalhados. Como nédo havia
uma ferramenta deste tipo disponivel e 0 nimero de arcos a serem calculados

era muito grande optamos pelo uso do fator de correcdo mencionado.

Histograma

250

200 +

150 +

100

Freqgiiéncia

50

-

11
1,2
1,3
14
15
1,6

~ 0 O N
— —

2,1
2,2
2,3
2,4
25
2,6

2,7
Mais

Fator de correcédo

Figura 4.3 - Gréfico de distribuicdo dos fatores de correcao (elaborado pelo autor)

4.2.VELOCIDADE DOS VEICULOS

De posse das distancias de cada um dos trechos que poderdo compor uma rota
de entrega, devemos calcular o tempo que os respectivos trechos levaréo para
serem percorridos. Para tanto é necessario saber a velocidade média

desenvolvida por um veiculo ao percorrer um determinado trecho.

Com o intuito de se determinar esta velocidade, novamente fizemos uma
analise dos dados histéricos do grupo. Desta vez comparamos a distancia real
percorrida entre dois pontos e o tempo total de percurso (sem incluir as paradas
para carga e descarga do veiculo). Os resultados obtidos podem ser vistos na

Figura 4.4 que conta com 1.000 observagoes.

60

y = 7E-07x° - 0,0008x° + 0,3096X + 16,952
R®=0,7656
80
< 70 .
£
X 60 P . . — %
®© i P o, oY o .
e 50 . . o % . : -
E 40 - MR R
(O]
B 30
ke
5 20
> 10
0
0 100 200 300 400
Distancia (Km)

Figura 4.4 - Grafico velocidade média desenvolvida de acordo com a distancia do
trecho (elaborado pelo autor)

Ao contrario do caso em gque analisamos 0 comportamento da distancia teorica
e real, agora € nitida a existéncia de uma correlacéo. A medida que as viagens
se tornam mais longas, a velocidade média tende a aumentar. Isto se deve ao
fato de que, para se percorrer grandes distancias utilizam-se, na maioria das
vezes, estradas nas quais a velocidade desenvolvida € maior. Ja nos trechos

curtos, é comum o trdfego em vias urbanas onde ha maiores

congestionamentos e semaforos que reduzem a velocidade média.

Para representar este fato no modelo de solucdo tentamos ajustar algumas
curvas que representassem bem este conjunto de pontos. Uma curva
logaritmica parece se adequar bem aos dados analisados, mas ela tem o
problema de tender a zero quando a distancia € pequena. Assim, optamos por
uma equacao do terceiro grau que apresenta um r? de 0,766 e representa muito

bem os pontos no intervalo que utilizaremos na pratica. Para evitar que a

61

velocidade se torne muito alta para grandes distancias ja que o termo ao cubo é

positivo, fixamos um limite em 60km/h que na pratica é bastante razoavel.

Desta forma, a velocidade € dada pela equacédo abaixo:

V =min(0,0000007>d? - 0,0008>d +0,3096>d +16952 , 60)
4.3.FROTA DE VEICULOS

O proximo passo no levantamento dos dados necessérios a resolucdo do
problema é conhecer a frota de veiculos disponiveis para realizar as entregas,

assim como sua estrutura de custos.

O Grupo néo possui nenhum veiculo préprio para realizar o abastecimento de
suas lojas. Todas as entregas sao feitas através de empresas terceirizadas que
disponibilizam caminhfes dedicados ao atendimento das necessidades da
operacdo. No total, sdo mais de 40 transportadoras que prestam servigos para
a empresa, 0 que garante uma ampla variedade de veiculos e disponibilidade.
Cerca de 500 veiculos compde a frota dedicada, mas este niumero pode ser
adaptado de acordo com as necessidades. A Tabela 4.1 lista os modelos de

veiculos utilizados nas operagfes da empresa:

Modelos disponiveis

Carreta mono eixo com bau e plataforma Toco frigorifico com plataforma
Carreta com bau sem plataforma Toco frigorifico sem plataforma
Leve bal com plataforma Truck bau com plataforma longo
Leve balu sem plataforma Truck bau com plataforma

Leve frigorifico sem plataforma Truck bau sem plataforma

Toco bau com plataforma Truck frigorifico sem plataforma
Toco bau sem plataforma Truck isotérmico com plataforma

Tabela 4.1 - Lista de veiculos utilizados nas operacdes (elaborado pelo autor)

62

Apesar desta grande variedade de veiculos disponiveis, na pratica, apenas
alguns deles sao utilizados nas operagbes de abastecimento de carga
paletizada com a qual estaremos lidando ao longo deste trabalho. Os modelos
mais importantes neste processo sdo as carretas, trucks e veiculos leves, que
séo utilizados no transporte de produtos de mercearia, principal categoria
considerada no escopo deste trabalho. Maiores detalhes destes veiculos

encontram-se na tabela a seguir:

. Capacidade | Qtd. | Cubagem Medidas Internas / Externas (m)
Veiculo 3 :
(Kg) Paletes| (M) Comprimento | Largura Altura
Leve 9.000 7 19,7 4,79/5,00 [2,06/2,220| 2,00/2,24
Truck 22.000 14 41,2 7,29/750 |246/2,60]| 2,30/2,56
Carreta 44.000 28 85,0 14,40 /14,60 | 2,46/2,60 | 2,40/ 2,66

Tabela 4.2 - Detalhes dos veiculos (elaborado pelo autor)

Tendo sido definidos os centros de distribui¢do, as lojas e os veiculos que serdo
utilizados nos modelos de solucdo, se faz necessario conhecer 0s custos
incorridos ao se fazer uma viagem de um ponto a outro nesta rede com um
determinado veiculo. Neste sentido dois pontos importantes devem ser
esclarecidos.

Em primeiro lugar, como a frota € terceirizada, os custos com 0s quais
estaremos trabalhando n&o sdo os custos reais da operagdo (combustivel,
depreciacdo dos veiculos, salario dos motoristas, etc.), mas sim o valor

estabelecido em contrato com as transportadoras.

O segundo ponto importante é que este pre¢co pago por viagem ndo depende
diretamente da distancia total percorrida, tempo de percurso, ou mesmo do
peso ou volume transportado. Este valor esta definido como um preco fixo pago
por viagem de acordo com uma classificagao de localidade onde se encontram

as lojas.

63

De acordo com este modelo de custeio, duas lojas localizadas na regidao de
Campinas, por exemplo, terdo o mesmo custo de atendimento mesmo que uma
delas esteja mais longe ou necessite de um volume maior. E evidente que este
custo fixo é definido por tipo de veiculo de tal forma que uma viagem de carreta
custara necessariamente mais do que uma realizada por um veiculo leve para
uma mesma distancia. Finalmente é importante notar que caso um veiculo seja
designado para atender mais de uma loja na mesma viajem, o preco cobrado
sera sobre a localidade mais cara, além de um adicional de R$16,00 por cada
loja extra visitada.

Concluindo, podemos dizer que os fatores determinantes do custo de frete sao:
Tipo do veiculo — quanto maior a capacidade mais caro o frete;
Regido onde a loja se encontra — quanto mais distante a regiao mais
caro o frete, porém este é constante dentro de uma mesma regiao;
Numero de lojas no roteiro — custo extra de R$16,00 para cada loja além
da primeira em cada viagem (independentemente da regido ou veiculo);
Combinacao de lojas no roteiro — caso existam lojas de duas regioes

num mesmo itinerario o frete sera cobrado pela mais cara.

Regido Custo de Frete
Carreta Truck Leve
Americana / Sta. Barbara | R$ 627,90 R$ 408,20 R$ 288,60
Aracatuba R$ 2.642,90 R$ 1.733,94 R$ 1.235,26
Araraquara R$ 1.362,40 R$ 889,20 R$ 630,50
Atibaia R$ 383,50 R$ 256,10 R$ 184,60
Bauru R$ 1.765,40 R$ 1.153,36 R$ 818,74
Botucatu R$ 1.257,10 R$ 817,18 R$ 579,02
Cacapava R$ 626,60 R$ 413,14 R$ 295,36
Campinas R$ 509,60 R$ 331,76 R$ 235,04
Campos do Jordao R$ 912,60 R$ 604,24 R$ 433,16

Tabela 4.3 - Exemplo de custos de frete por regido e modelo de veiculo (elaborado
pelo autor)

64

4.4, DEMANDA

As lojas da empresa, trabalham com uma ampla variedade de produtos. Dentre
as categorias mais importantes podemos citar frutas, legumes e verduras,
mercearia, carnes e outros produtos refrigerados, eletrodomésticos, etc. Como
jd& mencionamos na definicAo do problema, estaremos abordando neste
trabalho o abastecimento das lojas com cargas paletizadas, que podem ser

transportadas em caminhfées comuns.

A demanda das lojas, é composta por diferentes categorias de carga paletizada,
guais sejam contentores, paletes, gaiolas, roltainers e carrinhos etc. Todas
estas categorias de carga podem ser tratadas de forma analoga, exceto pelos
carrinhos e gaiolas que ocupam metade de uma posi¢cado palete no veiculo.
Assim, a demanda total de uma determinada loja € obtida pela consolidacdo de
toda a carga demandada, respeitando-se o volume que ela ocupa.

Para o proposito deste trabalho, escolhemos algumas datas com uma demanda
tipica para serem utilizadas como problema a ser resolvido. A Tabela 4.4 a
seguir representa a consolidacdo da demanda de algumas lojas numa das
datas escolhidas. A demanda total neste dia foi de 2269 paletes, o que nos da
uma idéia do tamanho do problema com o qual estamos lidando.

Loja Demanda por tipo de carga
VDE | PLT | AZU | GLA | PTO | ROL | CAR | TOTAL
1 0 13 2 2 0 0 0 16
2 0 29 1 2 0 0 0 31
3 0 4 0 0 0 0 0 4
4 0 5 0 0 0 0 0 5
5 0 5 0 0 0 0 0 5
6 0 5 0 1 0 0 0 55
7 0 0 0 0 0 20 0 20
8 0 7 0 2 0 0 0 8

Tabela 4.4 - Consolidac&o das cargas no dia escolhido (elaborado pelo autor)

65

Carga | Descricéo

VDE |Contentores Verdes
PLT |Paletes PBR

AZU | Paletes Azuis

GLA |Gaiolas

PTO |Contentores Pretos
ROL |Rolltainers

CAR | Carrinhos
Tabela 4.5 - Descricdo dos tipo de carga (elaborado pelo autor)

4.5.JANELAS DE RECEBIMENTO

Uma das restricbes operacionais que torna este um problema complexo é a
existéncia de janelas de recebimento muito diferentes entre as lojas. Esta janela
pode ser definida por dois horarios, um inicial (hi) e um final (hf) entre os quais
as entregas podem ser efetuadas. Caso um veiculo chegue em uma loja antes
de sua janela de recebimento, o mesmo devera ficar aguardando até o
momento hi. Por outro lado, se ele chegar apds hf a entrega ndo podera ser

efetuada e a rota é considerada inviavel.

A Tabela 4.6 mostra as janelas de recebimento para algumas das lojas da rede.
Repare que podem existir casos onde o horario final € menor do que o inicial.
Isto representa que a loja pode receber mercadorias durante a madrugada de
um dia para o outro. Para representar este fato no modelo, somamos 24 horas
no horario final do recebimento quando necessario, fazendo com que a janelas
ficassem com a duragao correta. Os dados completos podem ser observados
no Anexo C.

66

Loja Distancia Inl"cio do Fipal do
(Km) Recebimento (h;) | Recebimento (hy)
1 23 12:00 15:00
2 13 18:00 20:00
3 17 11:00 15:00
4 16 06:00 08:00
5 17 19:00 21:30
6 22 13:00 18:00
7 88 08:00 14:00
8 21 19:00 22:00
9 114 06:00 22:00
10 155 06:00 07:00
11 19 20:00 22:00

Tabela 4.6 - Janelas de recebimento (elaborado pelo autor)

O horério no qual um veiculo parte do CD, que também consiste numa variavel

de deciséo, é determinado com base na janela de recebimento da primeira loja

da rota. Este horario sera igual a hi desta loja menos o tempo de percurso do

trecho do CD até a mesma. Desta forma, o veiculo chegara a loja no momento

mais cedo em que pode realizar a entrega.

O levantamento de dados foi fundamental para a resolugcéo do problema. Este

processo nos permitiu conhecer melhor as operagdes da empresa e nos deu

subsidios para a constru¢cdo dos modelos. No préximo capitulo, passaremos a

descrever em detalhes todos os modelos desenvolvidos neste trabalho e os

métodos utilizados em cada um deles.

67

5. RESOLUCAO DO MODELO

ApoOs ter estudado os principais aspectos relacionados ao problema que nos
propomos a resolver, feito uma ampla revisdo bibliografica sobre os tipos de
problemas e os métodos de solucdo existente, e ter detalhado o modelo
desenvolvido e os dados levantados, passaremos agora a descrever como
estes foram utilizados no desenvolvimento dos métodos de solugcdo. Este

capitulo esta dividido em quatro partes de acordo com 0os métodos utilizados.

Na primeira parte trataremos do método bésico utilizando heuristica de Clarke &
Wright, e todas as modificacfes feitas para adapté-lo as condi¢bes reais do
problema, principalmente quanto ao célculo de economias, a frota heterogénea
e as lojas que ndo podem receber carretas. Na segunda parte falaremos do
modelo que utiliza a meta heuristica conhecida como Meta-RaPS, que é uma

forma simples de se melhorar o0 desempenho de uma heuristica construtiva.

Na terceira parte descreveremos o modelo que utiliza a meta-heuristica de
Algoritmos Genéticos na resolucdo do problema. Finalmente, na quarta parte
sera explicado como o Algoritmo Genético foi adaptado para funcionar de forma

paralela em um cluster.

5.1. ALGORITMO ADAPTADO DE CLARKE AND WRIGHT

Nesta secdo iremos detalhar como o algoritmo bésico foi adaptado de forma a
atender todas as restricbes préaticas do problema e os resultados obtidos pelo
uso desta heuristica.

68

5.1.1. Atendimento da Demanda

Como foi observado na revisdo da literatura sobre o assunto, uma das
hipoteses basicas da grande maioria dos métodos de solucédo, inclusive da
heuristica de Clarke & Wright, € que a demanda de cada uma das lojas ndo
pode exceder a capacidade dos veiculos, pois neste caso a mesma nao poderia
ser atendida em apenas uma parada. No entanto, conforme mencionado na
Sec¢do 3.2, a maioria das lojas possui demanda superior a comportada pelos
veiculos que podem atendé-las. Assim, corrigir esta distorcdo passa a ser, no

problema pratico que estamos resolvendo, uma questédo fundamental.

Neste sentido, foi implementado um algoritmo para suprir a demanda de cada
loja com caminhdes lotados visitando exclusivamente aquela loja até que a
demanda remanescente seja menor do que a capacidade do maior veiculo
capaz de atendé-la. Assim, garantimos que a demanda de cada loja que sera
roteirizada pela heuristica € menor do que a capacidade dos caminhdes,
permitindo que o0s métodos pesquisados sejam utilizados sem maiores
problemas. Na pratica, este método é bastante intuitivo, pois enviar veiculos
grandes com carga completa é a forma de transporte que minimiza o custo

unitario por palete entregue.

O algoritmo proposto segue 0s seguintes passos:

- Para cada loja
- Verifique qual o maior veiculo que pode atender a loja
- Enquanto a demanda remanescente for maior do que a capacidade deste
veiculo
- Envie um caminh&o deste tipo com carga completa

- Recalcule a demanda remanescente

69

5.1.2. Célculo das Economias

Como vimos anteriormente, o0 objetivo da heuristica € minimizar a distancia total
percorrida em todas as rotas, assim, a economia que desejamos computar é a
distancia economizada ao juntar duas lojas numa mesma rota. No entanto, na
operacao analisada, o custo de frete pago as empresas transportadoras néo é
diretamente proporcional a distancia percorrida pelo caminhdo. Este custo é
calculado com base em regides geograficas pré-definidas, e negociado a priori.
Cada uma destas regides possui um custo fixo por viagem que chamaremos de
Ci, independentemente da distancia real percorrida. Caso o caminhdo seja
designado para atender mais de uma loja ha mesma viajem, é cobrado além de
Ci um custo extra para cada outra loja atendida (Delta;)). Se as lojas estiverem
em regides cujos custos de atendimento sejam diferentes entre si, sera cobrado
pelo maior valor. Desta forma, o custo de atender uma determinada rota pode
ser definido como:

CR =max(C,,C,,....C,)+ (N - 1)>max(Delta,, Delta,,..., Delta,)

Onde N representa o niamero de lojas atendidas pela rota e CR o custo total da

rota.

Sabendo que o custo de frete é calculado deste modo, podemos adaptar o
conceito original de economia proposto no algoritmo para adequa-lo ao caso
préatico. Vejamos o que ocorre no exemplo abaixo:

70

VS0 Ol

CR =Ci+C CR = max(C;,Cj)+max(Delta;, Delta;)

Figura 5.1 - Exemplo do célculo modificado das economias (elaborado pelo autor)

Neste caso onde CR € o custo de uma rota, assumindo que C; > Cj e Delta; >

Delta;, a economia obtida pela jungéo das lojas i e | na mesma rota seria:

Sij = Cj — Delta,-

Num caso genérico teriamos:

S = min(C;, Cj) — min(Delta;, Deltay)

5.1.3. Frota Heterogénea

Ao contrario do que ocorre na heuristica basica de Clarke & Wright, no modelo
gque estamos criando existe a possibilidade de se utilizar diversos tipos de
veiculos para percorrer cada rota. Este fato adiciona maior complexidade ao
problema e deve ser cuidadosamente incorporado do algoritmo desenvolvido
para sua solugdo. Para lidar com esse fato o algoritmo funciona da seguinte

maneira:

71

Assim como no algoritmo original, Inicialmente sao criadas rotas

individuais para atender cada uma das lojas;

A cada rota é atribuido o menor caminhdo capaz de atender a demanda
da respectiva loja;

Quando duas lojas sdo avaliadas para se juntar em uma mesma rota,
caso a demanda das duas combinadas ultrapasse a capacidade do
veiculo atual, o menor veiculo capaz de atender essa demanda é

designado para a rota.

Seguindo estes passos durante a execucdo da heuristica de Clarke & Wright,
garantimos que no final do processo, apenas rotas que respeitem a capacidade
dos veiculos serdo formadas e que 0s menores veiculos possiveis serao
alocados para cada rota. Desta forma, caso seja possivel atender uma rota com
um veiculo menor, estaremos minimizando os gastos com fretes uma vez que

0s veiculos menores possuem custo fixo mais baixo por viagem.

Por exemplo, considere duas lojas cujas demandas sejam de 5 paletes cada.
Inicialmente, a cada uma delas sera atribuida uma rota percorrida por um
caminhdo Leve cuja capacidade é de 7 paletes. Caso estas duas lojas sejam
unificadas num mesmo roteiro, de acordo com a regra que acabamos de definir,
a demanda combinada de 10 paletes passaria a ser atendida por um Truck com
capacidade de 14 paletes. Supondo um custo fixo de frete igual a R$100,00
para o veiculo Leve e R$140,00 para o Truck, o custo de atendimento destas
duas lojas passaria de R$200,00 (2x R$100,00) para R$156,00 (R$140,00 +
R$16,00 devido a loja extra na mesma rota), resultando numa economia de
R$44,00.

72

5.1.4. RestricOoes no Recebimento

Com a utilizacdo de diversos modelos de veiculos, surge um problema que nao
ocorre quando a frota € homogenia. Trata-se da impossibilidade de algumas
lojas receberem determinados tipos caminhdes por suas dimensdes nao serem
compativeis com as docas de recebimento disponiveis ou ndo haver espacgo de
manobra, entre outros motivos. No caso do Grupo pudemos classificar as lojas
em duas categorias, as que aceitam todos os tipos de veiculos e as que néo

podem receber carretas.

Foram necessarias algumas adaptagBes na heuristica original para que ela
pudesse trabalhar com esta nova restricdo, principalmente no atendimento
inicial da demanda, como ja foi explicado no inicio desta secao, e na avaliacao
da viabilidade na juncdo de duas lojas numa rota. Neste segundo ponto as

mudancas implementadas foram as seguintes:

- Quando duas lojas séao consideradas para a formacdo de uma rota:
- Caso todas as demais restrices sejam respeitadas:
-Se a demanda considerando a nova loja for menor do que a capacidade
do segundo maior caminh&o
- Faca a juncgéo das rotas.
- Se esta demanda for maior do que a capacidade da carreta:
- N&o faca a juncéo.
- Se a demanda ficar entre a capacidade da carreta e do segundo maior
caminhéo:
- Se todas as lojas da rota incluindo a nova podem receber carretas:
- Faca a juncéo das rotas.
- Se pelo menos uma loja n&o aceita carreta:

- N&o faca a juncéo.

Deste modo garantimos que uma determinada rota formada s6 podera ser
atendida por carretas se cada uma das lojas que a comple seja capaz de

receber carretas.

73

5.2. ALGORITMO ADAPTADO META-RAPS

As heuristicas construtivas tém como grande vantagem o fato de chegarem a
solucdes vidveis de boa qualidade em pouco tempo. No entanto, & medida que
0os problemas reais de transporte comegam a contar com mais restricoes, a
gualidade destes procedimentos se deteriora. Para superar este problema
podemos utilizar procedimentos meta-heuristicos que procuram solugdes
melhores iterativamente. Uma forma de se incrementar a qualidade de uma
heuristica construtiva transformando-a numa meta-heuristica € através do

método Meta-RaPS, cujos principios forma detalhados no item 1.

Utilizando estes conceitos estabelecidos na revisdo bibliografica, pudemos
reformular o algoritmo de Clarke & Wright visto na sec¢do anterior de forma a
garantir que seu desempenho fosse incrementado de uma maneira bastante
simples. Na versao utilizada do Meta-RaPS, optamos por uma estrutura ainda
mais simples de sele¢do da proxima atividade que requer apenas uma variavel

de controle, tornando mais facil sua implementacéo e entendimento.

Definimos uma variavel chamada de Py que representa a probabilidade de num
dado momento a regra heuristica ser utilizada na juncdo de dois nds para
formar uma rota. Esta variavel é estabelecida no inicio do programa como um
valor entre 0 e 1. A cada passo do algoritmo de Clarke & Wright o programa
escolhe um nimero aleatério também entre 0 el. Caso este nimero seja menor
do que Py a regra heuristica € utilizada na formacgéo da proxima rota. Caso este
valor seja maior do que Py, aquela atividade é ignorada e passamos a proxima
atividade da lista.

Assim, quanto maior o valor de Py, mais parecida com solucgéo original proposta
pela heuristica de Clarke & Wright a solucdo formada tendera a ser.

74

Analogamente, quanto menor este valor, maior a probabilidade das duas
solucdes encontradas serem diferentes. No caso extremo de Py = 1, a solugao
obtida serd idéntica a de Clarke & Wright. Além disso, optamos por nao
implementar um procedimento de melhoria para ser utilizado no final do

processo, sendo este um potencial campo para pesquisas futuras.

Além desta modificacdo na estrutura bésica da heuristica construtiva,
implementamos também algumas modificacdes no procedimento inicial de
atendimento da demanda que ultrapassa a capacidade dos veiculos,
incorporando elementos aleatérios. O novo procedimento funciona da seguinte

maneira:

- Para cada loja
- Verifique qual o maior veiculo que pode atender a loja
- Enquanto a demanda remanescente for maior do que a capacidade deste
veiculo
- Caso esta demanda seja maior do que a capacidade deste veiculo
somada a do segundo maior veiculo capaz de atendé-la:
- Envie um caminh&o deste tipo com carga completa
- Caso esta demanda seja maior do que a capacidade deste veiculo
somada a do terceiro maior veiculo capaz de atendé-la:
- Escolha aleatoriamente um dos dois maiores veiculos
- Envie um caminh&o deste tipo com carga completa
- Caso esta demanda seja maior do que a capacidade deste veiculo
somada a do quarto maior veiculo capaz de atendé-la:
- Escolha aleatoriamente um dos trés maiores veiculos
- Envie um caminh&o deste tipo com carga completa

- Recalcule a demanda remanescente

assuma valores diferentes, mas sempre menores do que a capacidade do maior
veiculo que pode atendé-la. O fato da demanda que ira ser roteirizada assumir
valores distintos altera o comportamento da heuristica construtiva dando origem

a solucgdes diferentes e potencialmente melhores.

75

5.3.ALGORITMO GENETICO

O passo seguinte na busca por melhores solugcbes para o problema abordado
foi a implementacdo de um método meta-heuristico. Neste sentido, foi adotado
o Algoritmo Genético. Na presente sec¢do, iremos detalhar de que forma a teoria
vista foi utilizada na construgcdo deste método de solucdo, suas principais
caracteristicas e os resultados obtidos.

Um das etapas mais importantes na implementacdo de um AG € a escolha da
estrutura de codificacdo de uma solugcdo, ou o0 DNA de um individuo. Esta
estrutura deve ser capaz de armazenar toda a informacdo necesséria para

representar de maneira precisa uma determinada solucao.

No entanto, o material genético armazenado em um individuo ndo precisa
necessariamente representar de forma direta a solugdo. A informacéo
armazenada no DNA constitui o gendétipo do individuo, enquanto a solucao final
representa o seu fenotipo. Para passar do genétipo para o fenétipo, o algoritmo
conta com um conjunto de regras e procedimentos que lhe permite fazer esta
transicdo, assim como na natureza, o material genético € convertido no ‘corpo’

do individuo.

Como estamos trabalhando com um problema de roteirizagdo, a solugdo que
desejamos obter é um conjunto de rotas que atenda a demanda das lojas de
modo a minimizar o custo da operagao respeitando suas restricbes. Desta
forma a estrutura da solu¢cdo deve conter a informacdo necesséria para a
construgdo destas rotas. No entanto, neste problema, estamos abrindo a
possibilidade de que uma loja seja visitada por varios caminh8es mesmo que
sua demanda possa ser atendida por apenas um. Assim, além de determinar a

sequUéncia de lojas a ser atendida em cada rota, devemos determinar quantos

76

paletes serdo entregues em cada uma delas. Para representar o problema
estruturado desta forma, utilizamos a seguinte codificagao:

Parametros:

N — nimero de individuos numa populacao;

R — nimero méximo de rotas em uma solucéo;

T — tamanho maximo de uma rota em numero de lojas visitadas;
L — nimero de lojas a serem atendidas;

K — tipos de caminhdes disponiveis.

indices:

i —numero do elemento na populacdo,i=1 - N;
j —namero da rota na solucéo, j= 1 - R;
k — posicdo da lojanarota, k=1 -T.

Variaveis:

Popix — loja visitada na posi¢éo k da rota j na solugéo i, Popjx =0 - L;
Popijo — tipo de veiculo utilizado para atender a rota j na solucéo i, Popj=1 - K.

Esta estrutura de codificacdo nos permite representar em um vetor solucao toda
a informacao necessaria para o estabelecimento das rotas e dos veiculos que
irdo percorré-las, no entanto ndo representa a quantidade de paletes que sera
entregue para cada uma das lojas. Isto ocorre, pois optamos por manter a
atribuicdo da demanda a cada loja como uma caracteristica fenotipica
determinada por um algoritmo simples de alocacdo. Desta forma mantemos
reduzido o tamanho do vetor solugdo e garantimos um processo de evolugéo

mais simples e rapido.

7

A alocacdo da quantidade entregue em cada parada de um veiculo e
determinada pelo seguinte algoritmo:

- Para cada rota de uma solugéo, comecando da primeira:
- Inicie com o caminh&o vazio:
- Para cada loja da rota, enquanto houver capacidade ociosa no veiculo:
- Se a demanda remanescente da loja for menor do que a capacidade
ociosa:
- Atenda toda a demanda da loja.
- Caso contrério

- Entreque toda a capacidade disponivel e termine a rota

Obedecendo este algoritmo, podemos determinar, além da sequéncia de lojas
visitadas em cada rota, a quantidade entregue em cada parada. Este valor fica

armazenado na variavel Qjx.

Uma vez definida a estrutura basica de codificacdo, o préximo passo no AG € a
geracdo de uma populacao inicial de individuos ou solucdes. Neste trabalho
estaremos adotando duas técnicas diferentes para elaboracdo destes
individuos. Uma delas consiste na geracdo de valores aleatdrios para cada
posicdo de DNA do individuo, o que gera solu¢des iniciais muito ruins, mas
garante uma ampla exploragdo do espaco de solucdes possiveis. Outra
abordagem é o uso de uma solucao inicial obtida pela heuristica de Clarke &
Wright ou do Meta-RaPS. Este segundo método garante a convergéncia muito
mais rapida do algoritmo, mas pode conduzir a 6timos locais e limitar sua

capacidade de encontrar solugcdes melhores.

Outro elemento fundamental no algoritmo genético € o processo de sele¢do dos
individuos que irdo se recombinar para dar origem a nova populagdo. Como foi
exposto na teoria sobre AGs, existem muitos métodos para se fazer esta
selecéo, cada qual com vantagens e desvantagens. No desenvolvimento deste

78

trabalho, dois dos métodos mais populares foram implementados, sendo que
um deles apresentou resultados significativamente melhores nos testes e por

isso foi o escolhido.

O primeiro método testado consiste na atribuicdo a cada individuo de uma
probabilidade de ser selecionado como “pai” proporcional a sua funcéo
utilidade. Assim individuos que apresentam melhores solu¢des para o problema
possuem mais chances de se reproduzir, mas todos os individuos possuem
alguma probabilidade. Este método é interessante, pois garante uma amplitude
de recombinac¢des bastante grande possibilitando o surgimento de individuos
bem diversificados. No entanto, esta abordagem faz com que individuos ruins
gerem muitos descendentes diminuindo o nimero de boas solugbes em cada

geragao.

O segundo método considerado baseia-se na selecdo apenas dos melhores
individuos da populacao, para dar origem a geragdo seguinte. Para tanto, todos
os individuos de uma populagéo sédo classificados numa em ordem decrescente
de acordo com sua utilidade e apenas os x melhores sao escolhidos para
formar o grupo de onde seréo escolhidos os pais de cada elemento da proxima
geracao. x neste caso é um parametro de algoritmo que deve ser estabelecido
pelo usuario. Cada elemento deste grupo tem igual probabilidade de ser

escolhido.

Este segundo método, conhecido como elitismo, possibilita o surgimento de um
maior numero de individuos de qualidade, e assim, maior velocidade na
obtencdo de boas solugcdes. Em todos os testes realizados este método
apresentou melhores resultados e por isso foi adotado. A escolha do parametro
X NAo apresentou impacto significativo no desempenho do algoritmo e seu valor

foi fixado em 5 ap6s alguns testes.

79

O passo seguinte nos AGs é a recombinacdo dos individuos selecionados (por
qualquer dos métodos descritos). Para dar origem a uma nova populacao.
Neste ponto os algoritmos genéticos apresentam uma forma significantemente
diferente dos demais métodos de solu¢des de gerar novos individuos. Esta

funcao e realizada por um operador chamado de crossover.

O crossover, assim como nha biologia, permite o intercambio de material
genético potencialmente util na formacéo de novas solugbes. Para controlar a
taxa de utilizagcdo deste operador existe um parametro Pc que estabelece a
probabilidade de que ele seja utilizado. Caso este operador ndo seja utilizado
para combinar duas solugcbes para gerar uma terceira, € feita uma copia
idéntica a um dos pais escolhidos aleatoriamente, 0 que representa uma

reproducao assexuada. O crossover funciona da seguinte maneira:

- Caso seja escolhido crossover com probabilidade = Pc;
- Escolha dois individuos para serem os pais (X e Y);
- Escolha um ponto “z” no vetor solucdo para efetuar a quebra;
- Para j=1 até z e k=0 até t;
- Copie os valores de popx,;;
- Para j=z+1 até r e k=0 até t;

- Copie os valores de popy,;.

O processo de geracdo de novos elementos é seguido por outro operador
baseado na biologia; a mutacdo. No contexto deste problema, foram
estabelecidas trés modalidades de mutacdo usadas em conjunto por modificar
as solucdes geradas pela recombinagéo. A primeira forma de mutacéo consiste
na simples alteracdo da informacdo contida em um locus ou variavel do
problema. Neste caso, um valor aleatério, representando uma loja ou um tipo de
caminhdo dependendo da posicdo do vetor € escolhido aleatoriamente com
uma probabilidade Pm. Como visto na literatura e comprovado com os testes,
esta probabilidade deve ser bastante baixa para garantir um bom desempenho.

80

Caso este valor seja muito alto, varias mutacdes ocorrem ao mesmo tempo

destruindo solugdes boas. No modelo o valor adotado para Pm foi 0,01%.

O segundo tipo de mutacao implementado consiste na troca de posi¢ao de duas
lojas numa mesma rota. Assim, 0 conjunto de lojas visitadas por um
determinado caminhdo é mantido, alterando apenas a sequéncia na qual elas
sdo atendidas. Esta operagdo permite que conjuntos promissores de lojas
sejam colocados em uma seqUéncia que otimize seu custo de atendimento e

tenham suas restricbes de janela de tempo respeitadas.

O terceiro e dltimo tipo de mutacdo proposto neste modelo € a troca de lojas de
uma rota para a outra. Esta geragdo permite a formacgédo de rotas atendendo
conjuntos diferentes de lojas buscando sua otimizac&o. Estes dois ultimos tipos
de mutacdo sdo implementados da seguinte forma de acordo com uma
probabilidade Pt:

- Para cada variavel pop;;jx com uma probabilidade = Pt;
- Escolha uma das duas formas de troca com 50% de probabilidade para cada;

- Caso seja escolhida a troca na mesma rota aleatoriamente;
- Escolha outra posicao na rota aleatoriamente;
- Inverta suas posicoes;

- Caso seja escolhida a troca entre rotas;
- Escolha outra rota aleatoriamente;
- Escolha uma posicao aleatdria nesta rota;

- Inverta suas posicoes.

Logo apds o processo de geracdo da nova populagdo, uma rotina simples de
correcdo é aplicada as solugdes obtidas para eliminar algumas caracteristicas
indesejaveis. Este procedimento percorre todas as rotas formadas em cada

uma das soluc¢des fazendo o seguinte:

81

Retira da rota atendida por um determinado veiculo as lojas que nao
podem recebé-lo;
Retira da rota as lojas que nao estao recebendo nenhuma carga;

Elimina a demanda entregue em posi¢des vazias do vetor solucéo.

Tal rotina elimina problemas existentes nas solu¢des construidas a partir das
recombinacg6es e muta¢des garantindo um menor numero de solugdes inviaveis

formadas a cada geracao.

Uma vez que a nova populagéo esteja totalmente constituida, o préximo passo
no algoritmo é a avaliagdo de utilidade de cada um de seus individuos, que
neste caso representa o custo total para atender a demanda.

Como j4 foi dito anteriormente, os custos de transporte sdo baseados em
valores fixos preestabelecidos para cada localidade acrescidos de um delta
para cada loja alem da primeira presente numa rota. A utilidade de um individuo
sera 0 somatério do custo de se percorrer todas as rotas que compde a

solugéo.

No entanto como o algoritmo genético baseia-se na recombinacdo e mutagéo
aleatdrias, sdo geradas constantemente solucbes que ndo atendem as
restricbes do problema. Assim, para fazer com que o algoritmo convirja para
solucdes viaveis, atribuimos uma penalidade que é somada ao custo total de
uma solucdo para cada restricdo que ndo é atendida. Esta penalidade ird
diminuir a utilidade daquelas solugbes que ndo atendem todas as restricoes,
diminuindo assim sua probabilidade de gerar descendente. Por outro lado os
individuos que respeitarem um maior niumero de restricdes serdo beneficiados e
criardo um maior numero de descendentes garantindo a convergéncia para

solugdes implementaveis.

82

Adotamos tabém o uso de penalidades variaveis de acordo com a quantidade
de restricbes desrespeitadas. Quanto maior o0 numero de restricbes
desrespeitadas de uma determinada categoria, maior a penalidade atribuida a
cada uma delas. Conseglentemente, quando hd um pequeno numero de
restricbes ndo sendo atendidas, a penalidade marginal diminui. Este
mecanismo permite que solugBes fortemente invidveis convirjam rapidamente
para solucdes vidveis, dado o alto custo associado as penalidades. Da mesma
forma ele permite que solucdes viaveis violem algumas restricdes para explorar

melhor a sua vizinhanga na busca de melhorias.

Todos estes conceitos foram utilizados no calculo da funcéo utilidade para as
seguintes restri¢oes:

A demanda de uma loja ndo é totalmente satisfeita;

A duracdo de uma rota ultrapassa a jornada méxima de trabalho;

As janelas de recebimento ndo séo respeitadas.

Para cada uma destas restricbes foi estabelecida uma penalidade associada
cujo valor relativo ird afetar o comportamento do algoritmo até que ele convirja
para uma solucao viavel. Dai em diante, o valor destas penalidades néo tera
grande impacto em seu desempenho.

O critério de para utilizado no algoritmo genético foi um numero fixo de
iteracdes. Como a cada iteracdo varias solucfes diferentes sdo testadas, este
parametro pode afetar significativamente o desempenho do algoritmo. Caso um
namero pequeno de iteracbes seja definido, pode ndo haver tempo suficiente
para que boas solugdes sejam encontradas. Por outro lado, se forem permitidas
muitas iteragbes, corremos o0 risco de desperdicar muito tempo de

processamento sem gque melhorias sejam obtidas.

83

Para calibrar este parametro fizemos vérios testes variando o numero de
iteracdes. O grafico da Figura 5.2 apresenta a relacdo existente entre a
qualidade da solugdo obtida e o numero de iteracbes. Como o algoritmo
genético trabalha com aleatoriedade, muitas vezes o resultado obtido para um
mesmo numero de iteragBes € diferente em duas rodadas. Mesmo assim, a

correlacdo entre as duas variaveis € bastante alta.

1400

4

& 1.200 -

w® 1.000

S

S 800 Ad

w

L]

T 800

1]

£ 400

=

o 200

&)
5 10 15
Numero de iteragdes (K)

Figura 5.2 - Correlagéo entre numero de iteracdes e qualidade da solugéo (elaborado
pelo autor)

Outro ponto que chama a atencdo no grafico e que a partir de certo nimero de
iteracdes, a qualidade da solugcdo ndo melhora muito. Na prética, optamos por
estabelecer um limite de 10.000 iteragbes como critério de parada para o

algoritmo.

5.4. ALGORITMO GENETICO PARALELO

Passaremos agora a descrever como 0 algoritmo genético foi paralelizado, a
forma como foi implementado e os resultados obtidos. Discutiremos 0s
aspectos mais relevantes e todas as adaptacOes feitas no algoritmo para que

este funcionasse em paralelo.

84

Conforme foi visto na Secdo 2.4, existem duas maneiras basicas de se
implementar um algoritmo genético de forma paralela, uma delas trabalhando
com uma unica populagéo que tem a avaliacdo dos individuos distribuida entres
os processadores disponiveis (método global), e outra onde cada né recebe
uma sub-populacéo que eventualmente troca individuos com as outras (método
das ilhas). Neste trabalho adotamos o segundo método por ele permitir ao
algoritmo explorar um universo maior de individuos possibilitando o
aparecimento de solu¢cdes melhores num tempo razoavel e diminuindo a

probabilidade de que o mesmo convirja para 6timos locais.

A adaptacao da versao sequencial do algoritmo para sua forma paralela foi feita
com o auxilio de fungcbes de comunicacdo entre computadores disponiveis na
biblioteca padrdo MPI cujos detalhes s&o discutidos no Anexo A. Assim como
0s outros métodos de solucdo utilizados neste trabalho, todo o algoritmo foi
programado na linguagem C. O cédigo fonte completo para todos os algoritmos

encontram-se no Anexo D.

A paralelizacdo ocorre da seguinte maneira: no inicio da execuc¢do, um dos nos
do cluster com o qual o usuéario tem interface (que chamaremos de n6 0) faz a
leitura do arquivo que contém os dados do problema e em seguida aciona 0s
demais nés através do comando MPI_Init() (vide Anexo A). A partir dai cada n6
executa um comando para saber quantos nds compdem a rede e qual é o seu

ndmero neste conjunto.

Deste momento em diante, cada n6 atua de maneira independente realizando
todas as etapas do algoritmo genético tradicional. Quando o algoritmo atinge
um numero pré-estabelecido de geragfes € executada uma rotina que realiza a
migracdo dos melhores individuos da populacdo de um determinado né para
um noé adjacente. Assim, caso existam 5 nés (0, 1, 2, 3, 4) os individuos

migrarao de O para 1, de 1 para 2, ... e de 4 para 0 completando o ciclo. Este

85

procedimento € repetido toda a vez que o numero de geracdes alcancar este
namero fixado de geragoes.

No final, todos os nés enviam sua melhor solugdo para o n6 0 que irh comparé-

las e exibir como resultado final a solugéo que apresentar o menor custo total.

A caracteristica do AG Paralelo de trabalhar com mudultiplas populacdes
simultaneamente permite uma ampla exploracdo do espaco de solucdes
aumentado as chances de se obter boas solugbes. Ao mesmo tempo, a
migracao de individuos de uma populagdo para outra garante que nenhum né
perca muito tempo trabalhando com uma populacdo cujo resultado seja ruim,
pois esta serd melhorada com a chegada de individuos de populagdes vizinhas.
Além disso, o fato de cada né trabalhar a maior parte do tempo de forma
independente acarreta num baixo trafego de rede proporcionando speedups
bastante elevados.

Combinando estas caracteristicas com a capacidade de processamento
fornecida pelos 60 nés do Cluster no Tanque de Provas Numérico da Naval
(Anexo A) obtivemos resultados muito animadores, conforme sera explorado no

proximo capitulo.

86

6. ANALISE DOS RESULTADOS

6.1. SOLUCAO ATUAL DA EMPRESA

O primeiro passo na analise dos resultados obtidos pelos métodos propostos é
a definicdo de um termo de comparacdo. Para tanto foi feita uma ampla anélise
dos resultados atuais obtidos pela empresa no processo de abastecimento.
Nesta fase, alguns pontos chamaram a atencéo e merecem ser discutidos com
mais detalhes para que a base de comparacgéo seja compativel com o resultado
do modelo proposto.

Ao analisar os valores pagos pela empresa para as transportadoras pudemos
verificar que os mesmos diferem daqueles que seriam de se esperar com base
nos contratos, conforme pode ser observado na Tabela 4.3. Em alguns casos,
existem valores pagos na pratica muito mais baixos que o esperado. Estas
diferencas decorrem principalmente de negociacdes pontuais com alguns
fornecedores e de ajustes, como quando, por exemplo, uma parcela do frete de
um dia é pago em outro. Por este motivo ndo poderemos utilizar os custos
histéricos para comparar com os resultados obtidos pelo modelo, pois estes ndo
sao calculados de forma igual, tornando necessaria uma outra abordagem para

comparagao.

Outro ponto que logo chama a atencdo quando estudamos o histérico das
entregas efetuadas, é que muitas vezes a capacidade dos caminhfdes parece
ser violada. Isto ocorre na pratica, pois as vezes, é possivel remontar alguns
paletes e empilha-los de modo que o volume ocupado seja menor. Para tornar
os resultados comparaveis, tendo em vista que este procedimento nao pode ser

adotado no modelo, é necessario corrigir este efeito nos dados histéricos.

87

7

Também é importante ressaltar que os valores de demanda utilizados como
dados de entrada para o modelo foram obtidos a partir do histérico de entregas.
Assim, os roteiros utilizados pela empresa estao perfeitamente adequados a
demanda que estamos adotando no trabalho. No entanto, estd demanda néo
necessariamente reflete os pedidos que de fato foram feitos a Central de
Programacdao. Isto ocorre, pois, na pratica, uma parte da demanda de um dia
pode ser deixada para o dia seguinte caso se obtenha maior eficiéncia no
transporte.

Levando-se em conta todos estes fatores, foi necessario adotar alguns
procedimentos para criar uma base de comparagcdo para o resultado dos
modelos a partir do historico das operac¢des do grupo. Isto foi feito da seguinte

forma:

Em primeiro lugar, o valor histérico pago para as transportadoras foi
ignorado, pois este ndo seria comparavel;

O custo foi entdo calculado a partir das entregas efetivamente
realizadas com base nos custos contratuais utilizando-se exatamente
as mesmas regras adotadas no modelo;

No caso do volume entregue na pratica em um roteiro ser maior do
gque a capacidade do caminhdo utilizado, adotamos que este
caminhdo teve que retornar ao CD antes de prosseguir com as
entregas;

Se o volume for maior do que a capacidade mesmo que apenas uma
loja seja atendida, adotamos que um veiculo maior teve que ser

utilizado.

Com todos estes ajustes pudemos finalmente obter uma solugéo original
tecnicamente comparavel com o resultado dos modelos propostos neste

88

trabalho. Os custos apdés os ajustes dos 7 cenarios basicos que estamos

analisando podem ser observados na tabela a seguir:

Tabela 6.1 - Custos ajustados dos cenarios (elaborado pelo autor)

Caso Custo original
Dom. R$ 21.677
2° R$ 35.766
3° R$ 79.572
42 R$ 44.138
5° R$ 61.801
6° R$ 71.388
Sab. R$ 66.470

6.2. COMPARACAO ENTRE OS METODOS

Os métodos de solucdo descritos no capitulo anterior foram aplicados a

resolucdo do problema de abastecimento das lojas do Grupo para um conjunto

de dados selecionado representando um dia tipico de operacdo. O dia foi

escolhido juntamente a geréncia da empresa por ser uma data representativa

para as operacdes no restante do ano. Além desta data basica (uma 4?2 feira)

foram analisados outros 6 dias na mesma semana para verificar o impacto na

gualidade das solugbes decorrentes da mudanca no volume, tendo em vista

qgue nos finais de semana este €, normalmente, bem menor. A tabela a seguir

apresenta um resumo dos 7 casos considerados.

Caso Nl]m_ero de Demanda total
lojas (Qtd. Paletes)

Dom. 48 1.228,0

22 158 1.997,0

3?2 254 4.094,5

42 214 2.269,0

52 242 3.104,5

62 229 3.999,0

Sab. 206 3.185,5

Tabela 6.2 - Resumo dos casos considerados (elaborado pelo autor)

89

Como o numero de lojas que estamos considerando nestes problemas € muito
grande, as solugfes obtidas apresentam inimeros roteiros, o que torna inviavel
a representacdo grafica dos mesmos. Para ndo exibir uma quantidade enorme
de tabelas com os resultados, optamos por mostra-los de forma sintética por
meio de alguns indicadores chave da qualidade das solugdes. O resultado
completo para o cenério base, resolvido pelo método do algoritmo genético
paralelo encontra-se no Anexo C. Apenas para ilustrar o tipo de solucéo gerada
pelo método, e permitir algumas discussoes, a Figura 6.1 apresenta alguns do

roteiros formados.

(£) (d)
Figura 6.1 - Exemplo de roteiros formados pelo AG Paralelo (a, b) e pelo Meta RaPS
(c, d) para o cenario base (elaborado pelo autor)

90

O ponto que mais chama a atencdo quando comparamos os roteiros formados
pelos dois métodos é que no Meta-RaPS, cada rota tende a ser composta por
lojas situadas numa mesma distancia do CD. Isto ocorre, pois o método de
formacado das rotas obtém as maiores economias no custo quando o frete para

as duas lojas é o mesmo, ou pelo menos parecido.

Os resultados obtidos pelos métodos descritos no capitulo anterior foram
razoavelmente diferentes entre si. A Tabela 6.3 apresenta um resumo do custo

total do processo de abastecimento para cada um dos dias estudados.

. Custo total (R$)

Método Dom. 28 3? 42 52 6° Sab.
Original 21.677|35.766|79.572|44.138 |61.801|71.388|66.470
Clarke & Wright |22.143]30.071|71.431|37.129|55.680 | 65.822 |60.518
Meta RaPS 21.976 (29.747 | 71.255| 36.759 | 55.335 | 65.494 | 59.794
AG 22.815(32.760 | 78.331|40.255 | 60.465 | 70.196 | 65.327
AG Paralelo 21.407 | 30.564 | 74.334 | 37.534 | 56.831 | 67.586 | 62.585

Tabela 6.3 - Custo total das solucdes (elaborado pelo autor)

Como podemos perceber, no primeiro caso (Domingo), o AG Paralelo foi o que
apresentou o melhor resultado. No entanto, para os demais casos, 0 método
que proporcionou 0s custos mais baixos foi 0 Meta-RaPS. E importante notar
também que em todos 0s casos, 0 custo das solu¢des propostas € inferior ao

praticado atualmente pela empresa.

Como pode ser observado na Tabela 6.4, os métodos de solugcdo propostos,
além de proporcionar uma melhoria significativa no custo total da operacéo,
garante que um numero bem menor de restricbes sejam violadas. Desta forma,
minimizamos o0s problemas de excesso de carga transportada nos caminhdes,
jornadas muito longas para os motoristas e desrespeito as janelas de
recebimento, viabilizando ndo s6 uma melhoria nos custos como também no

nivel de servico proporcionado e na seguranca das operacoes.

91

Método Restri¢cdes violadas .
Jornada | Falta | Janela | Capacidade

Original 8 0 ? 43

Clarke & Wright 8 0 0 0

Meta RaPS 7 0 0 0

AG 7 1 1 0

AG Paralelo 6 1 0 0

Tabela 6.4 - RestrigOes violadas nas solucdes para o caso base (elaborado pelo autor)

A restricdo de jornada de trabalho é violada algumas vezes em todos os casos,
pois algumas lojas simplesmente ficam tado longe que ndo podem ser atendidas
no tempo disponivel. A falta € zero na solucdo original, pois os préprios paletes
entregues foram considerados a demanda para o modelo. No entanto, sabemos
gue na pratica muitas vezes o grupo deixa de entregar alguns produtos,
enviando-os apenas no dia seguinte. Nos dois AGs, um palete deixou de ser
entregue pois esta é uma restricdo relaxada a qual atribuimos uma penalidade.
No Clarke & Wright e no Meta-RaPS isto ndo € possivel pois a restricdo é

rigida.

As janelas de recebimento, que também foram relaxadas nos dois tipos de AGs,
foram respeitadas em quase todos as rotas e métodos. Apenas no AG, uma loja
teve um atraso de 6 min. na entrega. Nao foi possivel comparar com a solugao
original, pois ndo sabemos o hordrio em que as entregas foram feitas na
pratica. Finalmente, a capacidade do caminhdo é uma restricao rigida em todos
0s modelos, e, portanto, foi sempre respeitada. Todavia, na solucao original, 43
caminhdes sao enviados com mais paletes do que sua capacidade tedrica. Isto
se deve a remontagem de paletes no momento do carregamento para ocupar
espacos vazios no veiculo. Apesar de ser uma pratica comum, este fato nao

pode ser incorporado no modelo.

O tempo médio de processamento em cada rodada varia bastante de acordo
com método de solucdo utilizado. Para os algoritmos genéticos, este tempo é

diretamente proporcional ao numero de iteracdes, e varia de acordo com o

92

namero de lojas a serem atendidas. No caso da heuristica construtiva ele
depende apenas do tamanho do problema, ja que é executado em apenas uma
iteracdo. Finalmente para o Meta-RaPS, este tempo depende do numero de
iteracdes e do tamanho do problema, mas é significativamente menor do que no
caso dos genéticos. A tabela a seguir apresenta o tempo gasto na resolucao
dos modelos para cada um dos métodos e dias da semana.

Método Tempo de processamento (S)
Dom. 28 3? 42 52 6° Sab.
Clarke & Wright 0,6 3,1 20,0 9,0 14,4 12,2 9,0
Meta RaPS 12,2 111,7 392,8 265,8 361,3 2914 231,7
AG 388,8| 1.398,0(1.888,8| 1.342,8| 1.581,0| 1.808,4| 1.533,6
AG Paralelo 627,0| 1.019,0(2.698,0(1.503,0| 1.439,0| 1.312,0f 1.113,3

Tabela 6.5 - Tempos de processamento (elaborado pelo autor)

A andlise da Tabela 6.5 deixa claro que o Clarke & Wright é o método mais
rapido em todos os casos. No entanto, o Meta-RaPS apresenta um tempo
médio de processamento bastante razoavel, deixando um intervalo de tempo
suficiente para que o analista possa estudar as solucbes e fazer os ajustes

necessarios.

A solucdo proposta pelo modelo, independentemente do método utilizado,
consiste num conjunto de rotas, cada uma sendo percorrida por um
determinado tipo de veiculo. Estas rotas podem ser entregas diretas, caso

apenas uma loja seja visitada, ou roteiros, que possuem mais de uma loja.

Os diferentes métodos de solucdo utilizados apresentaram resultados diferentes
ndo s6 em termos do custo total da operacdo, mas também quanto ao mix de
veiculos utilizados e a propor¢éo de entregas diretas. A Figura 6.2 ilustra estas
diferengas para 0 nosso cenario base.

93

Tipo de veiculo Forma de entrega
0/ — 0/ —
100% Leve 100%
801 80 .
Roterios
60+ 60 1
Truck
40+ 40 1
Direta
204 201
Carr
O ase G AG-P Clake Meta O Rase 26 a6-P Clake Meta
M Rotas 201 200 174 155 154

Figura 6.2 - Comparacéo entre as rotas formadas para 4 feira (elaborado pelo autor)

Quando comparamos as solugbes fornecidas pelo algoritmo genético
sequencial e o paralelo, podemos notar que, a medida que o segundo obteve
resultados melhores, um nimero maior de roteiros foi utilizado em detrimento
das entregas diretas. Além disso, a proporcéo de veiculos grandes (carretas e
trucks) € maior no paralelo, fato que pode ser explicado pelo menor custo
unitario proporcionado por estes veiculos.

Por outro lado, quando comparamos os resultados obtidos pelo Clarke & Wright
e pelo Meta-RaPS nao percebemos grandes diferencas entre eles. Isto ocorre
por que a estrutura de formacdo de solu¢cdes de ambos é muito parecida e,
apesar do Meta-RaPS obter solu¢gbes de melhor qualidade, estas nao diferem

substancialmente daquelas obtidas pelo CW.

Finalmente, quando comparamos o Clarke & Wright ou o Meta-RaPS com os
genéticos, podemos perceber que tanto o nimero de entregas diretas é menor,
quanto a utilizagdo de veiculos de maior capacidade é mais significativa, o que
em parte explica os melhores resultados obtidos por estes métodos na maioria
dos casos

94

O fato das solugbes propostas em geral proporcionarem resultados que utilizam
um menor numero de roteiros é que ir4 permitir a geracdo de economias de
longo prazo. Isto ocorre, pois com 0S novos roteiros é possivel redimensionar a
frota dedicada através de mudancas nos contratos garantindo tanto economias

para a empresa como a sobrevivéncia das transportadoras.

A economia média ponderada pelo volume da operacdo obtida pelo método
Meta-RaPS, foi de aproximadamente 11% ao longo da semana. Se projetarmos
este resultado para os demais dias do ano, considerando o custo total anual de
aproximadamente R$13,2 milhfes, chegamos a uma economia de R$1,4
milhdes apenas na operacdo do CD abordado neste trabalho. Dadas as
propor¢cdes da operacao de abastecimento das unidades do Grupo, cada ponto
percentual de melhoria operacional representa R$132 mil de economia anual.
Este fato por si sO ja justifica o investimento em métodos mais eficazes de

roteirizacao.

Ao contrario do que imagindvamos no principio do trabalho, o fato dos
algoritmos genéticos conseguirem ignorar a restricdo de que cada loja sé pode
ser atendida por um veiculo ndo proporcionou, na maioria dos casos, resultados
melhores que o Meta-RaPS. Isto se deve principalmente a dois fatores. Em
primeiro lugar, com a eliminacao desta restricdo, o espac¢o de solucdes viaveis
para o problema cresce demais, devido ao nimero de novas combinacgdes
permitidas. Desta forma, o algoritmo n&o consegue convergir para uma solugéo
muito boa. O segundo fator que prejudica o desempenho do algoritmo é a
necessidade de se calcular a quantidade entregue em cada parada ja que isto
ndo é imediato como quando adotamos a restricdo de uma visita por loja (neste
caso, toda a demanda da loja deve ser atendida em cada parada). Este célculo
extra exige um grande esforco computacional e torna o algoritmo bem mais

lento.

95

Tal fato mostra que a hipotese simplificadora que impede multiplas entregas
numa mesma loja, apesar de restringir as solu¢des possiveis, € muito boa no
sentido de garantir que os algoritmos convirjam mais rapidamente para

solucdes de qualidade.

Se por um lado o AG Paralelo ndo apresentou melhorias significativas quando
comparado ao Meta-RaPS, por outro pudemos perceber que os ganhos versus
a versado sequencial sdo expressivos (em torno de 5,5%). Assim, se as técnicas
de computacdo paralelas puderem ser aplicadas em algoritmos que ja
apresentem em suas versdes sequenciais resultados de alta qualidade, sem
ddvida os ganhos obtidos, tanto em tempo de processamento, como ha
gualidade final das respostas, certamente serdo consideraveis.

Um ponto importante, que ndo pode deixar de ser comentado neste momento, €
falta de conexdo entre os valores contratuais pagos pelo grupo para as
empresas transportadoras e os drivers de custo reais da operacdo de
transporte. Como j& discutimos anteriormente, o frete pago é definido de acordo
com a regido onde a loja se situa além de um adicional para cada loja extra
visitada. Este valor ndo leva em conta a distancia total percorrida nem o tempo
do trajeto, que sao os fatores geradores de custo para a transportadora. Deste
modo, uma solugdo que minimiza o valor pago pela empresa né&o

necessariamente reduz os custos da operacao para a transportadora.

Para se precaver deste custo operacional mais elevado, as transportadoras tém
que cobrar um valor mais alto do que seria possivel caso a otimizacdo fosse
conduzida considerando-se 0s custos reais de transporte. Assim, se fosse
possivel alterar os contratos para que estes fossem baseados nos drivers reais
de custo, poderiamos negociar condicbes mais favoraveis para nossos
fornecedores e consequentemente baixar o custo total do processo gerando

maior valor ao longo da cadeia produtiva.

96

6.3.IMPLEMENTACAO DA SOLUCAO

Até agora discutimos o problema de roteirizacdo dos caminhdes no processo de
abastecimento com uma abordagem bastante conceitual, focando o
desenvolvimento de modelos e sua solugcdo através de diferentes métodos.
Estas andlises nos permitiram concluir que as idéias propostas, se
implementadas, tém grande potencial para gerar economias no processo e
ganhos de produtividade. No entanto, o trabalho ndo termina com a resolucao
dos modelos em um computador. E preciso fazer com que eles se tornem parte
da operacdo da empresa e sejam capazes de gerar boas solu¢des em todos 0s
casos, com flexibilidade para lidar com situac6es especificas. Nesta secao
estaremos explicando como o0s modelos se integram ao processo de
abastecimento e as mudancas necessdrias neste processo para que O0S

mesmos possam ser utilizados na prética.

O novo processo, para absorver os modelos propostos anteriormente, deve ser
ligeiramente diferente daquele apresentado no Item 1. A figura a seguir
apresenta de forma simplificada o processo proposto:

1 Z z 4 5
Recebimento Cﬁreparagﬁu dos OSDIUI;éD dos Oﬁwaliagéu dos © Transports
dos DEdlidDS +| dados para o modelos > ru:nteirn:ug pelos d oo o

das lojas rmodelo analistas

Figura 6.3 - Novo processo de abastecimento

Até o momento em que os pedidos chegam a central de programacdo nédo
estamos propondo nenhuma alteragdo no processo. Porém, a partir do
recebimento dos pedidos, sdo necessérias algumas mudancas nos

procedimentos.

97

O primeiro passo para a resolu¢cdo dos modelos é a criacdo dos arquivos que
contém os dados de entrada. Este procedimento € bastante simples tendo em
vista que um Unico arquivo no formato txt é utilizado. A Unica acdo necesséria
por parte dos operadores é fazer a consolidacdo da demanda de todas as lojas
a cada dia e atualizar o cadastro caso novas lojas sejam inauguradas (ou
fechadas). Seria possivel inclusive automatizar este procedimento via sistema,

sem grandes dificuldades, o que tornaria o processo ainda mais eficiente.

Uma vez tendo sido gerados os arquivos de entrada, o modelo se encarrega de
criar os roteiros apropriados para atender a demanda especifica daquele dia,
independentemente do método de solu¢cdo que venha a ser utilizado. Como
resultado, sdo gerados arquivos de saida especificando a sequiéncia de lojas
gue cada um dos roteiros deve atender, bem como os caminhdes que irdo

percorré-los e o horario de cada parada.

Para que o processo seja 100% capaz de se adequar a todas as restricoes
praticas € fundamental que um analista reveja as solugBes propostas pelo
modelo. Isto se d4, pois podem ocorrer situacbes imprevistas, como pedidos
emergenciais, acidentes com caminhdes, vias interditadas, etc. que ndo podem
ser consideradas no modelo. Desta forma o analista, com base na sua
experiéncia, podera adaptar os roteiros criando solugdes viaveis em todos 0s

casos.

Uma vez que 0s roteiros estejam prontos, o processo de carregamento dos
caminhdes e transporte fisico ocorre exatamente como era antes, concluindo o

abastecimento.

Apesar de na teoria a metodologia proposta poder funcionar sem grandes
problemas, proporcionando resultados de boa qualidade, na pratica, ela ainda
nao foi testada. Neste sentido, o proximo passo légico seria realizar um teste

98

piloto com a demanda de um dia para validar o modelo, bem como sua

viabilidade de implementacéao.

A maior mudanca, no entanto, ndo esta no fluxo do processo, mas sim no
conceito utilizado para a formacgéo dos roteiros. Hoje, existem alguns roteiros
pré-definidos que sdo utilizados para formar as rotas de entrega. Estes roteiros
ficam armazenados no sistema e sao utilizados sistematicamente para se
planejar as entregas, independentemente da demanda especifica do dia. Desta
forma, apesar de proporcionar boas solu¢gdes na maioria dos casos, 0 método
atual ndo permite que as rotas sejam otimizadas diariamente. O método que
estamos propondo garante que as peculiaridades dos pedidos de cada dia
sejam levadas em conta na formacgao dos roteiros. Assim, podemos trabalhar
com rotas muito diferentes das usadas atualmente, o que pode gerar
desconforto tanto para os analistas como para 0s motoristas que ja estédo

acostumados com os roteiros usados hoje em dia.

Para garantir que o novo método seja utilizado na pratica é fundamental
assegurar que todos os funcionarios envolvidos no processo de abastecimento
estejam a par das economias e ganhos de produtividade proporcionados,
fazendo com que eles passem a aceitar as mudancas e ndo se oponham a sua

utilizagéo.

Do ponto de vista prético, pudemos observar que o Meta-RaPS é um método
que apresenta uma o6tima relacdo custo-beneficio, dado que ele é facilmente
implementavel podendo ser rodado em um Unico computador, e apresenta bons
resultados. JA4 o algoritmo genético paralelo consegue obter as melhores
solugcbes apenas nos problemas menores, e sua implementacdo exige a
utilizagdo de um cluster que representa um investimento consideravel, além de

acarretar em custos de manutencgao e depreciacéo significativos.

99

Assim, podemos concluir que num primeiro momento 0 mais indicado seria a
adocdo do meétodo Meta-RaPS. Caso este tenha uma boa aceitacdo e
proporcione os resultados esperados, havera um tempo para que o modelo seja
perfeitamente ajustado as condi¢cfes praticas. Assim, poderemos avaliar se 0s
ganhos adicionais proporcionados por métodos mais sofisticados como o AG

Paralelo justificam o investimento em um cluster.

E valido lembrar que, caso o cluster seja adotado, sua utilizac&o estara restrita
a uma hora por dia, 0 que garante muito tempo livre para que outras aplicacées
sejam desenvolvidas. Conforme visto no item 1, os clusters podem ser usados
para uma série de aplicagbes empresariais como simulacbes financeiras,
modelagem de processos, etc. 0 que pode gerar outros beneficios que

justifiguem o investimento.

100

7. CONCLUSOES

O presente trabalho apresentou um método cientifico para a resolucdo do
problema de abastecimento das lojas do grupo varejista resultando em
melhorias significativas em relacdo ao processo atual. Estas melhorias puderam
ser obtidas gracas a formulacdo do problema de modo a incorporar as
restricbes operacionais enfrentadas na pratica, e a combinacédo de diferentes
técnicas de solucdo buscando aproveitar as melhores caracteristicas de cada

uma delas.

Além de apresentar uma forma estruturada de resolugdo de problemas de
roteamento de veiculos, o trabalho introduziu o conceito de Computacéo
Paralela que vem sendo cada vez mais utilizado em diversas éareas do
conhecimento, e como 0 mesmo pode ser implementado na solucao deste tipo
de problema. De fato, a combinac¢éo de algoritmos eficientes, com a capacidade
de processamento proporcionada pela computacéo paralela garante a obtencao
de solugdes muito boas num intervalo de tempo compativel com as

necessidades da operagao.

Este trabalho permite concluir que a utilizacdo de heuristicas construtivas é uma
forma simples e r4pida de se obter melhorias nas solu¢des quando comparadas
aquelas obtidas empiricamente. A adocdo de meta-heuristicas mais
sofisticadas, no entanto, € uma abordagem interessante, pois permite encontrar
solu¢des ainda melhores. Este fato € particularmente Util quando a empresa
possui operagOes de grande porte, onde cada pequeno ganho percentual na
gualidade da solugcao pode significar grandes quantias no resultado financeiro

da mesma.

A heuristica construtiva de Clarke & Wright se mostrou uma ferramenta
extremamente pratica, seja pela simplicidade conceitual do método das

101

economias e facilidade de implementacédo, flexibilidade para se adaptar a
diversas restricbes operacionais, e pelo baixo tempo de processamento. Outro
ponto importante € a possibilidade de obter rapidas melhorias nesta heuristica
através do algoritmo Meta-RaPS que a transforma numa meta-heuristica pela
introducdo de elementos aleatérios no processo de formagdo de rotas. Os
algoritmos genéticos que permitem a realizacdo de buscas mais amplas no
espaco de solugdes vidveis e 0 uso de clusters para a paralelizagdo do codigo e
aumento do poder de processamento se mostraram ferramentas bastante
interessantes, mas que na pratica ndo conduziram a resultados
significativamente melhores.

Finalmente, € importante indicar que os meétodos utilizados neste trabalho
podem ser o objeto de novas pesquisas para que sejam ainda mais
aprofundados e adaptados a novos problemas praticos. No caso especifico da
empresa em questdo, estes mesmos métodos podem ser adaptados para sua
futura utilizacdo em diferentes categorias de produtos, tais como frutas,
legumes e verduras, carga refrigerada, etc. Além disso, todo trabalho aqui
apresentado pode ser implementado com maior abrangéncia geogréfica
incluindo todos os centros de distribuicdo e lojas do grupo no Brasil. Alguns
novos critérios e restricdes também poderiam ser adicionados em futuras

implementacdes, dentre eles principalmente a priorizacao de pedidos.

Além disso, como foi visto na secdo 6.1, nem todos os aspectos praticos da
operacdo de abastecimento puderam ser incorporados ao modelo. O principal
deles, que poderia vir a ser considerado em trabalhos futuros € a remontagem
de paletes. Este procedimento permite que um caminhdo que ainda nao tenha
atingido o limite de peso, possa receber paletes extras, que sdo remontados
para ocupar o volume ocioso. Apesar de ser mais demorado, este procedimento
permite uma ocupacgdo melhor do veiculo e a consequente reducédo dos custos,

podendo ser considerado em estudos futuros.

102

BIBLIOGRAFIA

BALLOU, RONALD H. Gerenciamento da Cadeia de Suprimentos:
Planejamento, Organizagdo e Logistica Empresarial. Sdo Paulo. Bookman,
2001.

CANTU-PAZ, ERICK Implementing Fast and Flexible Parallel Genetic
Algorithms, Practical Handbook of Genetic Algorithms v.3, p.65-81, 1999.

CLARKE, G.; WRIGHT, J.W. Scheduling of Vehicles from a Central Depot to
a Number of Delivery Points. Operations Research, v.12, p.568-581, 1964.

CORDEAU, J-F.; GENDREAU, M.; LAPORTE, G. A Guide to Vehicle Routing
Heuristcs. Journal of Operational Research Society, n.53, p.512-522, 2002.

CUNHA, CLAUDIO B. Uma Contribuicdo para o Problema de Roteirizacdo
de Veiculos com Restricdes Operacionais. Tese de Doutorado — Escola

Politécnica da Universidade de Sao Paulo, 1997.

FISHER, M.; JAIKUMAR, R. A Generalized Assignment Heuristics For
Vehicle Routing. Networks, v.11, p.109-124, 1981.

FUH-HWA, L.; SHENG-YUAN, S. A Method for Vehicle Routing Problem
with Multiple Vehicle Types and Time Windows. Department of Industrial

Engineering and Management — National Chiao Tung University, 1999.

GOLDEN, B.L.; ASSAD, A.A. Vehicle Routing: Methods and Studies. Elsevier
Science Publishers B.V., Amsterdam, 1988.

103

HAJRI-GABOUJ, S.; DARMOU, S. A Hybrid Evolutionary Approach for a
Vehicle Routing Problem with Double Time Windows for the Depot and
Multiple Use of Vehicles. Institut National des Sciences Appliquées et de
Technologie, 2003.

HWANG, K.; Briggs, F. A. Computer Architecture and Parallel Processing.
McGraw-Hill International Editions, 1984.

LUNA, H. P. L.; GOLDBARG, M. C. Otimizagdo Combinatéria e Programacéao

Linear. 5 ed. Rio de Janeiro: Editora Campus, 2000.

MITCHELL, M. An Introduction to Genetic Algorithms. Cambridge: The MIT
Press, 1996.

MIURA, M. Resolucdo de um Problema de Roteamento de Veiculos em
uma Empresa Transportadora. Trabalho de Formatura (Graduacéo) — Escola

Politécnica, Universidade de Séao Paulo. Sdo Paulo, 2003.

MORAGA, R. et al. Solving the Capacitated Vehicle Routing Problem Using
the Meta-RaPS Approach. Industrial Engineering and Management Systems

Department.

NAVAUX, P. O. A. Introducéo ao Processamento Paralelo. RBC - Revista
Brasileira de Computacéo, v.5, n.2, p.31-43, Outubro, 1989.

OCHI, L.; VIANNA, D.; DRUMMOND, L. A Parallel Evolutionary Algorithm for
the Vehicle Routing Problem with Heterogeneous Fleet. PGCC -

Universidade Federal Fluminense.

104

OMBUKI, B.; ROSS, B. J.; HANSHAR, F. Multi-objective Genetic Algorithms
for Vehicle Routing Problem with Time Windows. Department of Computer

Science - Brock University, 2004.

PARREIRAS, L. Modelo Genético-Neural de Gestdo de Carteira de Acodes.
Trabalho de Formatura (Graduacao) — Escola Politécnica, Universidade de Sdo
Paulo. Sao Paulo, 2003.

PELIZZARO, CLAUDIA Avaliagdo do Desempenho do Algoritmo de um
Programa Comercial para Roteirizacdo de Veiculos. Tese de Mestrado —

Escolha de Engenharia de Séao Carlos, 2000.

PEREIRA, F.; TAVAREZ, J. GVR: a New Genetic Representation for the

Vehicle Routing Problem, Instituto Nacional de Engenharia de Coimbra, 2002.

PITANGA, M. Computacdo em Cluster. 2004. Disponivel em:

<www.clubedohardware.com.br/cluster.html>. Acessado em: 16 ago. 2004.

SANTANA, R.; SANTANA, M. Computacdo Paralela. Departamento de

Ciéncias de Computacdo e Estatistica - USP S&o Carlos, 1997.

SOLOMON, M. M. Algorithms for the Vehicle Routing and Scheduling
Problems with Time Windows Constraints. Operations Research, v.35, n.2,
p.254-265, 1987.

THANGIAH, SAM R. A Hybrid GA, Simulated Annealing and Tabu Search
Heuristics for VRP with TW. Practical Handbook of Genetic Algorithms V.3,
p.347-376, 1999.

WINSTON, W. L. Operations Research: Applications and Algorithms.
California: Duxbury Press, 1994.

ANEXOS

ANEXO A — Biblioteca MPI

As bibliotecas de programacéo mais utilizadas para trabalhar com clusters do

tipo Beowulf, dentre as diversas opg¢des disponiveis, séo:

OpenMP

O OpenMP tem como objetivo prover a comunicagao entre processadores com
memoéria compartilhada, ou em maquinas que simulem memdéria compartilhada
em cima de memoria distribuida. O OpenMP divide as iteracbes entre 0s
processadores disponiveis, fazendo com que num mesmo cédigo existam
trechos que rodam de forma sequencial e trechos que rodam de forma paralela.
Embora ndo seja um método que possibilite uma grande otimizacdo do
processamento, se comparado com 0s outros métodos de paralelismo, o
OpenMP possui a vantagem de ser de facil utilizacdo, pois o processo de

paralelizacdo do codigo existente € extremamente simples.

PVM (Parallel Virtual Machine)

A idéia do PVM consiste em montar uma maquina virtual de n processadores e
usa-los para executar tarefas simultaneas. O PVM é dividido em trés partes
principais:

Console: usado para montar a maquina paralela virtual.
Daemon: um programa que roda em cada magquina do ambiente

estabelecendo a comunicacao entre as diversas maquinas.

7

Biblioteca: é na biblioteca que residem as funcdes e sub-rotinas que

instruem o codigo a dividir as tarefas entre os daemons.

A biblioteca dispde de recursos que possibilitam manipular qualquer elemento
do seu ambiente virtual, inclusive em tempo de execugdo, embora ndo seja
muito eficiente fazé-lo dessa forma, devido ao custo computacional de se
adicionar e retirar maquinas. O ideal é criar a maquina virtual fora do codigo,
através do console, e usa-la varias vezes, ou mesmo deixa-la ativa enquanto as
maguinas estiverem ligadas, além de possibilitar disparar e matar processos a

partir do console.

MPI (Message Passing Interface)

O MPI é uma tentativa de padronizacdo do paradigma da troca de mensagens,
gue foi sugerida por um grupo de trabalho formado por pessoas da industria,
governo e universidades. Ele é constituido por um padrdao de troca de
mensagens com sintaxe definida, mas preservando caracteristicas exclusivas
de cada arquitetura, inclusive para arquiteturas de memoria compartilhada. O
principal objetivo do MPI é otimizar a comunicacdo e aumentar o desempenho
computacional das maquinas, ndo possuindo dessa forma gerenciamento

dindmico de processos e processadores.

Embora exista a restricdo citada acima, os programas escritos em MPI tendem
a ser mais eficientes pelo fato de ndo haver acimulo na carga de processos em
tempo de execucdo. A diferenca béasica entre o MPlI e o PVM é que, ao
contrario do anterior, no MPI existe um Unico cédigo fonte igual para todas as

maquinas e consequentemente um Unico processo rodando.

Esta biblioteca, por proporcionar o desenvolvimento de cddigos mais eficientes
e permitir grande controle sobre a forma como o0s processadores se

comunicam, foi adotada na elaboragao dos algoritmos paralelos neste trabalho.

Assim, consideramos apropriado detalhar um pouco melhor seu funcionamento

a sequir.

O MPI é uma biblioteca com func¢des para troca de mensagens, responsavel
pela comunicacao e sincronizacao de processos. Dessa forma, 0s processos de
um programa paralelo podem ser escritos em uma linguagem de programacéo

sequencial, tal como C ou Fortran.

O MPI funciona da seguinte forma: cada maquina ou né recebe uma copia do
codigo fonte e um nome. Cada n6 comecga a executar o programa a partir da

primeira linha de comando utilizando as seguintes diretrizes:

Executar todas as linhas de comando ndo nomeadas;
Executar as linhas de comando nomeadas com o0 mesmo nome do no;

N&o executar as linhas de comando com o nome de outro no.
Para que o programa siga essas diretrizes, o procedimento padrdo consiste na
inclusdo de varios comandos IF, com a seguinte estrutura: "Se eu sou 0 no tal,
faco isso... Sendo fago aquilo...".
A programacdo em MPI utiliza um conjunto préprio de funcdes basicas de
comunicacdo que iremos detalhar um pouco melhor, visando tornar mais
simples o entendimento dos algoritmos paralelos propostos neste trabalho.
MPI_Init: inicializa um processo MPI.

Sintaxe: int MPI_Init (int *argc, char *argv[])

Onde: argc - apontador para a quantidade de parametros da linha de

comando

argv - apontador para um vetor de strings

MPI_COMM_RANK: identifica um processo dentro de um determinado
grupo.Retorna sempre um valor inteiro entre 0 e n-1, onde n é o numero

de processos.

Sintaxe: MPI1_COMM_RANK (comm, rank);

Onde: comm - comunicador do MPI

rank - varivel inteira com o numero de identificagdo do processo

MPI_COMM_SIZE: retorna o numero de processos dentro de um grupo.

Sintaxe: MPI_Comm_size (comm, size);

Onde: comm - comunicador do MPI
size - variavel inteira que retorna o numero de processos iniciados
pelo MPI

MPI_Send: rotina basica para envio de mensagens no MPI.

Sintaxe: MPI_Send (sndbuf, count, dtype, dest, tag, comm));

Onde: sndbuf - identificacdo do buffer (endereco inicial de onde os dados
serao enviados)
count - numero de elementos a serem enviados
dtype - tipo de dado
dest - identificacdo do processo destino
tag - rotulo (label) da mensagem

comm - comunicador do MPI

MPI_Recv: rotina basica para recepc¢ao de mensagens no MPI.

Sintaxe: MPI_Recv (recvbuf, count, dtype, source, tag, comm, status);
Onde: recvbuf - identificacdo do buffer (endereco onde os dados seréo
recebidos)

count - numero de elementos a serem recebidos
dtype - tipo de dado

source - identificacdo do processo emissor

tag - rotulo (label) da mensagem

comm - comunicador do MPI

status - vetor de informacdes envolvendo os parametros source e

tag
MPI_Finalize: finaliza um processo MPI. Portanto deve ser a Ultima
rotina a ser chamada por cada processo. Sincroniza todos 0s processos
na finalizacdo de uma aplicacao MPI.

Sintaxe: MPI_Finalize();

Para obter maiores detalhes sobre o MPI consulte o site: www.lam-mpi.org. L&

estdo disponiveis para download todos os softwares necessarios para se
trabalhar com o MPI, além de guias detalhados e cursos on-line sobre a

ferramenta.

Vi

ANEXO B - O Cluster

O Cluster no qual todos os experimentos com algoritmos paralelos foram
executados faz parte de um grande projeto conhecido com Tanque de Provas
Numérico (TPN). Este projeto, conduzido em conjunto por uma série de
universidades, empresas e institutos de pesquisa, com sede na Escola
Politécnica da USP tem como objetivo criar um simulador de plataformas de
petréleo e sistemas flutuantes para ser utilizado em conjunto com o tanque de

provas fisico no projeto de plataformas e embarcagdes.

Dada a grande complexidade deste tipo de analises que envolvem uma série de
célculos hidrodinamicos e de elementos finitos surgiu a necessidade de se
utilizar sistemas com alta capacidade de processamento. Neste sentido foi
proposta a constru¢cdo de um Cluster que oferecesse alto desempenho a um

custo muito mais baixo do que a aquisi¢cao de um supercomputador equivalente.

O projeto do Cluster foi estruturado em trés etapas: a construcdo de um
protétipo com 10 néds, a criacdo do primeiro cluster com 60 ndés do modelo
Pentium 11l 866MHz e finalmente o segundo cluster com mais 60 nés Pentium
IV 2.4GHz. Os experimentos relatados neste trabalho foram realizados no
segundo cluster que serd mais bem detalhado a seguir.

A especificagdo para a montagem de 63 méaquinas, sendo 60 nds do cluster e

mais 3 maquinas reserva foram as seguintes:

Motherboard Intel GERG2LK
Placa de rede Gigabit Ethernet on board

Processador Intel Pentium 4 2.4 GHz com barramento de 533
MHz

Memoria DDR 333 de 512 Mbytes

Vil

Hard Disk ATA 133 de 40 Gbytes
Gabinete de 4U

A Figura 1.1.1 a seguir mostra a vista frontal parcial do cluster que foi montado
com gabinetes tipo rack em armarios com ventilagcdo e sistema de suprimento
de energia independentes. A Figura 1.1.2 apresenta a vista traseira do Cluster
enfatizando o cabeamento de rede e o suprimento de energia garantido por um

no-brake que permite o funcionamento das instalagées por até 2h caso falte

energia, localizado na parte inferior dos armarios.

e —— e ————

Figura A.1 - Vista frontal parcial do Cluster

o ommm SSRGS

Figura A.2 - Vista traseira parcial do Cluster

viii

A comunicacao entre os nos deste segundo Cluster € feita através de uma rede
do tipo Gigabit Ethernet que permite um trafego de rede 10 vezes maior do que
as redes convencionais. Os trés switches que controlam esta rede, o servidor
de backup que armazena os dados dos casos rodados no cluster, o no-break e
0 né de controle, que monitora a temperatura e as condi¢cdes de operacao dos
demais n6s podem ser vistos na figura A.3.

Figura A.3 - De cimai péra baixo: n6 de controle, switches Gigabit (pretos), switches
100Mbit (brancos), servidor de backup e no-breake.

ANEXO C — Resultados Detalhados

A tabela abaixo apresenta o resultado detalhado da solucdo gerada pelo

método do Algoritmo Genético Paralelo para o caso base da 42 feira.

Rota Lojas Veiculo | Tempo (h) | Distancia (Km) Frete (R$)
1 [173,193,46 | Truck 6,7 49,2 170,00
2 |56,139,174 | Leve 8,0 80,2 122,00
3 |108,43,161 | Truck 8,0 85,5 170,00
4 13,211,114 | Truck 8,0 83,5 196,00
5 133,130,39 | Truck 9,8 192,9 340,20
6 |64,155 Truck 9,1 218,7 267,80
7 132,12 Truck 7,8 1924 329,20
8 127,40 Leve 8,7 201,1 222,20
9 27,196 Truck 4,5 31,5 140,00
10 |116, 20 Truck 9,0 56,2 154,00
11 | 201, 169 Truck 9,5 81,9 180,00
12 41,34 Truck 8,8 206,3 283,20
13 | 192,81 Carreta 8,9 42,3 206,00
14 11,122 Leve 9,1 114,2 140,00
15 |67,48 Truck 5,6 58,2 154,00
16 | 24,26 Truck 4,9 41,8 154,00
17 |89, 90 Carreta 8,3 179,9 456,00
18 | 97,101 Carreta 8,5 198,3 426,00
19 | 104, 74 Carreta 6,0 71,2 206,00
20 197,22 Truck 5,8 67,1 154,00
21 137,129 Truck 7,2 153,9 288,80
22 1189, 92 Truck 7,2 52,9 154,00
23 |47,85 Truck 5,7 63,7 154,00
24 162,163 Truck 9,6 106,2 180,00
25 148,134 Truck 10,0 272,9 446,00
26 | 33,203 Truck 9,5 76,5 154,00
27 |65,179 Truck 9,2 229,7 267,80
28 |117,55 Truck 9,4 49,5 154,00
29 |115, 208 Truck 9,9 71,6 154,00
30 [19,213 Truck 54 54,2 154,00
31 |66,32 Truck 9,6 65,3 154,00
32 | 155,118 Truck 6,5 99,2 180,00
33 |57,14 Truck 4,9 43,1 154,00
34 142,171 Truck 54 58,3 154,00
35 129,128 Truck 8,5 188,4 300,80
36 | 156,54 Truck 9,2 78,3 154,00
37 | 153,154 Truck 7,2 153,3 209,40
38 204,121 Truck 9,6 70,5 154,00
39 38,131 Truck 9,2 2234 325,00

Rota Lojas Veiculo | Tempo (h) | Distancia (Km) Frete (R$)
40 | 176, 45 Truck 7,4 61,2 154,00
41 |190, 3 Truck 9,4 56,2 154,00
42 |191, 143 Truck 9,5 63,2 154,00
43 | 158, 151 Truck 9,6 69,7 154,00
44 | 109, 135 Leve 7,8 154,1 211,20
45 |5, 182 Truck 8,8 48,8 154,00
46 |70, 120 Truck 9,9 275,9 271,20
47 | 124, 195 Truck 9,1 67,6 154,00
48 | 126, 138 Truck 8,9 208,4 213,00
49 | 149, 152 Truck 9,2 221,1 288,80
50 |82,83 Truck 8,1 95,9 154,00
51 |25, 207 Truck 9,2 47,4 154,00
52 |50, 210 Truck 8,9 227,4 271,20
53 |141, 29 Truck 6,0 74,2 154,00
54 |18, 140 Truck 9,8 78,4 154,00
55 |113, 112 Truck 5,9 71,1 154,00
56 |88, 202 Truck 8,4 185,4 283,20
57 |119, 181 Leve 6,1 84,6 124,00
58 |79,172 Leve 8,3 82,5 124,00
59 |17, 145 Truck 8,8 204,0 300,80
60 |86, 157 Leve 7,0 108,9 106,00
61 | 160, 68 Truck 10,0 110,0 154,00
62 |184,194 Leve 8,1 165,4 154,60
63 |23, 206 Leve 51 48,9 106,00
64 |28,111 Truck 5,2 48,6 154,00
65 | 185, 209 Truck 10,0 284,6 289,80
66 | 105, 87 Carreta 8,9 190,2 368,00
67 | 200, 157 Leve 6,8 99,6 106,00
68 |198, 51 Truck 5,9 70,4 154,00
69 |180, 144 Truck 9,1 50,7 154,00
70 |1,188 Truck 4.6 34,5 140,00
71 |10,178 Truck 7,6 169,7 300,80
72 | 44,8 Truck 15,2 697,6 824,00
73 | 199, 42 Truck 5,8 66,2 154,00
74 | 213, 34 Truck 5,9 71,0 180,00
75 |125, 214 Truck 9,8 76,9 154,00
76 |168, 170 Truck 7,8 1924 329,20
77 |98 Carreta 5,9 165,9 433,00
78 |93 Truck 4,3 79,0 164,00
79 |80 Carreta 3,9 63,0 222,00
80 |77 Carreta 6,2 182,7 392,00
81 |69 Leve 3,1 36,6 90,00
82 |187 Leve 2,6 22,3 82,00
83 | 166 Truck 2,2 13,0 124,00
84 |84 Truck 4.4 84,4 138,00
85 |60 Leve 7,7 294,3 227,20

Xi

Rota Lojas Veiculo | Tempo (h) | Distancia (Km) Frete (R$)
86 |189 Leve 2,8 26,4 90,00
87 | 103 Carreta 2,7 26,0 173,00
88 |21 Leve 2,4 17,7 82,00
89 |79 Carreta 4,2 74,7 222,00
90 |[122 Truck 5,1 114,1 172,00
91 |61 Leve 9,7 444 4 338,40
92 |73 Carreta 2,5 19,8 173,00
93 | 167 Truck 2,4 18,0 124,00
94 |184 Truck 3,8 58,2 138,00
95 |153 Leve 5,7 153,3 138,60
96 |80 Carreta 3,9 63,0 222,00
97 | 146 Leve 7,9 311,4 401,20
98 |53 Leve 3,4 451 90,00
99 |94 Carreta 3,2 39,8 190,00
100 | 85 Leve 3,9 62,2 90,00
101 |72 Carreta 6,2 182,7 392,00
102 |37 Leve 13,7 697,6 573,00
103 | 86 Truck 4,2 74,0 138,00
104 | 183 Leve 8,4 347,6 249,20
105 |31 Leve 9,7 444 4 338,40
106 | 15 Truck 2,9 30,8 124,00
107 | 150 Leve 2,4 18,0 82,00
108 |4 Leve 3,2 37,0 90,00
109 |99 Truck 12,1 602,7 684,00
110 | 118 Truck 45 86,8 164,00
111 |91 Carreta 3,4 43,9 190,00
112 |71 Truck 3,2 39,7 138,00
113 |58 Truck 8,9 380,7 373,80
114 | 30 Leve 8,4 347,6 249,20
115 |52 Leve 3,2 39,3 90,00
116 | 123 Truck 4,2 74,2 164,00
117 |76 Carreta 3,6 51,3 190,00
118 | 75 Carreta 3,9 61,0 190,00
119 | 102 Truck 2,7 24,2 124,00
120 | 82 Truck 4,0 64,6 138,00
121 |78 Truck 10,9 525,7 607,00
122 | 106 Leve 2,4 16,7 82,00
123 | 152 Truck 5,7 153,3 193,40
124 |75 Carreta 3,9 61,0 190,00
125 | 98 Leve 5,9 165,9 203,20
126 | 35 Truck 2,8 27,4 138,00
127 |76 Carreta 3,6 51,3 190,00
128 | 159 Truck 3,7 54,9 164,00
129 | 205 Leve 3,1 36,6 90,00
130 | 100 Carreta 4,6 92,3 222,00
131 | 36 Leve 45 88,5 130,60

xii

Rota Lojas Veiculo | Tempo (h) | Distancia (Km) Frete (R$)
132 | 174 Truck 3,3 421 138,00
133 | 101 Carreta 3,2 37,2 190,00
134 | 62 Truck 9,7 444 4 475,60
135 | 122 Truck 51 114,1 172,00
136 | 17 Truck 5,7 153,3 193,40
137 | 84 Truck 4.4 84,4 138,00
138 | 72 Leve 6,2 182,7 180,80
139 |98 Carreta 5,9 165,9 433,00
140 | 101 Carreta 3,2 37,2 190,00
141 | 165 Leve 45 86,8 108,00
142 |72 Carreta 6,2 182,7 392,00
143 | 79 Carreta 4,2 74,7 222,00
144 | 175 Leve 6,3 192,4 222,80
145 | 177 Truck 2,0 10,1 124,00
146 | 107 Truck 3,8 59,2 164,00
147 | 101 Carreta 3,2 37,2 190,00
148 |71 Truck 3,2 39,7 138,00
149 | 110 Truck 3,5 48,9 138,00
150 |55 Truck 3,2 37,1 138,00
151 | 101 Carreta 3,2 37,2 190,00
152 |59 Truck 9,0 389,8 464,80
153 | 136 Leve 6,3 192,4 222,80
154 | 134 Truck 6,9 234,3 430,00
155 |9 Leve 6,2 182,7 180,80
156 | 147 Truck 8,3 335,4 494,80
157 |2 Truck 3,0 32,1 138,00
158 | 212 Truck 17,2 914,1 1.097,20
159 | 96 Carreta 57 153,3 294,00
160 |59 Leve 9,0 389,8 333,20
161 | 63 Leve 10,3 485,2 360,40
162 | 154 Truck 5,7 153,3 193,40
163 | 164 Truck 4,3 77,7 164,00
164 | 103 Carreta 2,7 26,0 173,00
165 | 92 Leve 3,6 52,6 90,00
166 | 92 Leve 3,6 52,6 90,00
167 |92 Truck 3,6 52,6 138,00
168 |49 Truck 2,8 26,4 124,00
169 | 16 Leve 3,9 62,5 90,00
170 | 6 Leve 3,3 41,2 90,00
171 | 186 Truck 3,0 32,3 138,00
172 |7 Leve 8,4 347,6 249,20
173 |95 Truck 5,7 153,3 193,40
174 |92 Truck 3,6 52,6 138,00

Tabela A.1 - Resultados detalhados (elaborado pelo autor)

Xiii

ANEXO D - Cdodigo Fonte dos Programas

Algoritmos genéticos - a versao apresentada abaixo é a paralela. Caso se
deseje a sequencial, podemos considerar este programa executado em apenas
um computador:

#include <stdio.h>

#include <stdlib.h>

#include <math.h>
#include <mpi.h>

#define NMAX 260 /Imaximo de numero de lojas

#define TIPO 3 /ltipos de caminhao
#define POP 60 //[Numero de elementos na populacao
#define TAM 4 /[Tamanho maximo de cada rota

#define MAXROT 550 //Numero maximo de rotas possiveis
#define FATOR 1.27 //Fator de correcao das distancias
#define CUST 5 /[Componentes de custo

#define VMAX 10 /Imaximo de visitas a uma mesma loja
#define MPITAG 1

double T = 10.0; /ljornada do motorista em h
double V = 175.0; /Ivelocidade media em km/h
double Temp = 1.5; /tempo medio de parada em h

double falt = 1.0, jorn = 1.0, jan = 1.0;//penalidades

/l[parametros do algoritimo

int GER = 10000; //[Numero de geracoes

double PMUT = 0.0001; /IProbabilidade de ocorrer mutacao

double PTROCA = 0.0001, /IProbabilidade de ocorrer troca

double PCROSS = 0.7; //Probabilidade de ocorrer crossover

int MRANGE = 6; /[Amplitude da mutacao

int BEST = 5; /[Numero de elementos a serem armazenados por geracao
int FREQ = 3; /lintervalo de geracoes em que ocorre migracao

int N; /[Numero de lojas

int ROT,; //INumero maximo de rotas

double hi[NMAX+1], hf[NMAX+1]; /ljanela de recebimento da loja i

double distiNMAX+1][NMAX+1]; /[distacia entre duas lojas

double tempop[NMAX+1][NMAX+1]; //tempo de percurso entre as lojas

double X[NMAX+1], YINMAX+1]; /Nlocalizacao da loja

double custofaixalNMAX+1][TIPO+1]; //custo para atender a loja

double delta]NMAX+1][TIPO+1]; /lcusto para atender uma loja adicional na mesma rota
int carreta[NMAX+1]; /lloja pode receber carreta

double d[NMAX+1]; /[demanda

double cap[TIPO+1]; /Icapacidade dos veiculos

int popO[POP+1][MAXROT+1][TAM+1]; //solucoes

Xiv

double pop1[POP+1][MAXROT+1][TAM+1];
int storeO[POP+1][MAXROT+1][TAM+1];
double store1[POP+1][MAXROT+1][TAM+1];

double custo[POP+1][CUST];

double distrota[POP+1][MAXROT+1];
double tempo[POP+1][MAXROT+1];
double hora[POP+1][NMAX+1][VMAX+1];
atendida

double entrega[POP+1][NMAX+1];

loja

/[Funcbes

int rnd(double min, double max)
b

int x;

double range = 0.0;

range = (max - min + 1);

/Isolucoes
/larmazena solucoes
/larmazena solucoes

/armazena todas as categorias de custo
/larmazena a distancia de cada rota
/larmazena a duracao de cada rota
/larmazena o horario em que cada loja foi

/larmazena a quantidade entregue para cada

//IGera um numero inteiro aleatorio entre min e max

X = min + (int) (range*rand() / (RAND_MAX+1.0));

return x;

}

double randomico(double n)

{

double x;
X = (n *rand() / (RAND_MAX+1.0));

return x;

}
int mod(int x)

if(x >= 0)
return x;
return -x;

}

double modulo(double x)

if(x >= 0)
return x;
return -x;

}

double maximo(double a, double b)

if(a > b)
return a;
return b;

XV

void calcdist()

{

inti, j;

for(i=0;i<=N; i++)
for(j=0; j<=N; j++)
dist[i][j] = 6377*(acos(sin(X[i])*sin(X[j]) +
cos(X[i])*cos(X[j])*cos(modulo(Y[j]-Y[i]))))*FATOR,;

double veloc(double x)

{

double vel,
vel = 16.952 + 0.3096*x + (-0.0008)*pow(x,2) + 0.0000007*pow(x,3);
if(vel > 60)
vel = 60;
return vel;
}
void calctempop()
{
inti, j;
for(i=0;i<=N; i++)
for(j=0;j <= N; j++)
tempopli][j] = dist[i][j] / veloc(dist[i][j]);
}
void calcrota()
{
inti, j, k;
for(i=1;i <= POP; i++)
for(j=1; j <= ROT; j++)
distrotali][j] = 0.0;
for(i=1;i <= POP; i++)
for(j=1; j <= ROT; j++)
{
distrotali][j] = distrota][i][j] + dist[O][popO[il[j][1]] + dist[popO[i][jI[TAM]][O];
for(k = 1; k < TAM; k++)
distrotali][j] = distrota][i][j] + dist[popO[i][jl[k]I[popO[i][jl[k+1]];
}
}

void gerar()
inti, j, k;
for(i=1;i <= POP; i++)

for(j=1; j <= ROT; j++)
{

XVi

popO[i][j][0] = rnd(1,TIPO);
for(k = 1; k <= TAM; k++)

{
popOfiJ[][k] = md(1,N);
} pop1[i]{il(k] = O;
}
}
void arrumar()
{
inti, j, k, I, soma[MAXROT+1], entNMAX+1];
for(i=1;i <= POP; i++)
{
for(j = 1; j <= ROT,; j++) //remove as lojas que nao recebem carreta. da rota feita
por carr.
for(k = 1; k <= TAM; k++)
if(popO[i][j][0] == 1 && carreta[popOli][jl[K]] == 0)
{
popO[i][il(k] = O;
} pop1[i]{il(k] = O;
for(j=1; j <= ROT; j++)
for(k = 1; k <= TAM; k++)
if(popl[i][jl[k] == 0O) //retira da rota as lojas onde a entrega eh 0
popO[i][i](k] = O;
if(popOl[i][jl[k] == 0) //retira o volume entregue para loja 0
} pop1[i]{il(k] = O;
for(j = 1; j <= ROT,; j++) // retira os zeros das rotas
for(l=1; | < TAM; [++)
for(k = 1; k < TAM; k++)
i{f(rJOpO[i][i][k] ==0)
popO[i]fil[] = popO[i]fil[k+1];
popl[iJ[il[k] = popl[i][jjk+1];
popO[i][il[k+1] = O;
} popl[iJfillk+1] = O;
}
}
void atribui()
{
inti, j, k, I;
double capac[MAXROT+1], entiNMAX+1];
double dif;

for(i=1;i <= POP; i++)

{
for(j = 1; j <= ROT,; j++)

Xvii

capac[j] = cap[popO[i]][o]];
for(=1;j<=N;j++)

ent[j] = 0;
for(j=1;j <= ROT;j ++)

for(k = 1; k <= TAM; k++)

dif = d[popO[i][j][]] - ent[popOfi][]KI];
if(dif > 0)

if(capacl[j] >= dif)
{

popl[i][k] = popafif]k] + dif,
ent[popO[i][j][k]] = ent[popO[i][j][k]] + dif;
capac[j] = capac]j] - dif;

}

else

pop1[IiJK = popi[I[IK] + capacll:
ent[popOfil[[K]] = ent{popO[iIii[K]] + capac(y;

capac[j] = 0;
}
}
}
}

void calcentrega()
{

inti, j, k;

for(i=1;i <= POP; i++)
for(j=1;j <= N;j++)
entregali][j] = 0;

for(i=1;i <= POP; i++)

for(j=1; j <= ROT; j++)
for(k = 1; k <= TAM; k++)

entrega(i][popO[i][il[k]] = entregali][popO[i][i](K]] + pop1[i][i]k];

}
void calctempo() //calcula o tempo total da rota
inti, j, k;
for(i=1;i <= POP; i++)
for(j=1; j <= ROT; j++)
tempoli][j] = 0.0;

for(i=1;i <= POP; i++)
for(j=1; j <= ROT; j++)

for(k = 1; k < TAM; k++) //tempo de percurso

tempoli][j] = tempoli][i] + tempop[popO[i][j][k]][popOil[il[k+1]];

. tempoli][j] = tempo[i][i] + tempop[O][popO[i]j][1]] +
tempop[popO[i][i][TAMI][O];

Xviii

for(k = 1; k <= TAM; k++) /ftempo de parada

if(popO[i][i](k] > 0)
tempoli][j] = tempoli][j] + Temp;

}
}
void calchora() //calcula a hora em que cada loja € atendida e o
{ /ltempo total da rota
inti, j, k, I, n;
double t;
for(i=1;i <= POP; i++)
for(j=1;j <= N;j++)
for(k = 1; k <= VMAX; k++)
horal[i][j][k] = 0.0;
for(i=1;i <= POP; i++)
for(j=1; j <= ROT; j++)
tempoli][j] = 0.0;
for(i=1;i <= POP; i++)
for(j = 1; j <= ROT; j++)
i{f(p0p0[i][i][1] >0)
n=1,
t = hi[popOfi][][L]];
for(l = 1; ((hora]i][popO[il[il[11][l] > 0)&&(l <= VMAX)); |++)
I=l;
horafil[popOfilill1M =t
tempoli](j] = tempop[O][popO[i][][1]];
for(k = 2; k <= TAM; k++)
for(l = 1; ((hora]i][popO[il[IIKII > 0)&&(I <= VMAX)); I++)
I=l;
i{f(pODO[i][i][k] >0)
t =t + Temp + tempop[popOli][j][k-
1]]{popO[i][]Ik]I;

tempoli][j] = tempolil[j] + Temp +
i{f(t < hi[popO[i][i]kII)

tempoli][j] = tempoli][j] + hi[popO[iJ[jIKI] -
} t = hi[popO[i[i][KIl;
hora[i][popOfi[]IKII] = t;

n++;

tempop[popO[i](i](k-1]1[popOfi]j][K]I;

}
tempoli][j] = tempoli][i] + Temp + tempop[popO[i][il[n]I[0];

XiX

}
}

}

void calccusto()

{
inti, j, k, n;
double cf, cd, e;
calcentrega();
calcrota();
calchora();

for(i=0; i <= POP; i++)
for(j = 0; j <= CUST; j++)
custol[i][j] = 0.0;

for(i = 1; i <= POP; i++)//penaliza ultrapassar a jornada maxima do motorista

for(j = 1; j <= ROT; j++)
if(tempoli][j] > T)

custol[i][3] = custo[i][3] + (tempo]i][j] - T)*500%*orn;

for(i = 1; i <= POP; i++)//penaliza ultrapassar a janela de recebimento

for(j = 1; j <= N; j++)
for(k =1; k <= VMAX; k++)
if(horafi][jl[k] > hffj])

custol[i][4] = custo[i][4] + (hora]i][j][K] - hf[j])*5000%*jan;

for(i = 1; i <= POP; i++) //custo de falta e sobra
for(j=1;j<=N; j++)

custol[i][2] = custoli][2] + modulo(d[j] - entrega]i][j])*5000*falt;

for(i = 1; i <= POP; i++) //custo de transporte
for(j = 1; j <= ROT; j++)
{
cf=0.0;
cd = 0.0;
n=0;
for(k = 1; k <= TAM; k++)
{

if(custofaixa[popO[i][j]l[K]l[popO[i][j][0]] > cf)
{

cf = custofaixa[popO[i][jl[K]][popO[i][I[O]];
cd = delta[popO[i][j][K]][popO[i][][Ol];

}
if(popO[i][i][k] = 0)

n++;

}

custo[i][1] = custo[i][1] + cf + (n-1) * cd;

[printf("%lf %If %d\n", cf, cd, n);

XX

for(i = 1; i <= POP; i++) /I custo total
for(j = 1; j <= CUST; j++)
custol[i][0] = custo[i][0] + custo[i][j];

}
void rfalt()
{
inti, j, k, stop, tipoc;
for(i=1;i <= POP; i++)
if(custol[i][2] > 0)
for(j=1;j <= N;j++)
if(d[j] > entrega[i][j])
{
if(carretalj] = 1)
tipoc = 1;
else
tipoc = 2;
stop = 0;
for(k = 1; (k <= ROT)&&(stop = 0); k++)
i{f(popo[i][k][ll ==0)
PopO[i][k][1] = J;
popO[i][k][0] = tipoc;
stop = 1;
}
}
}
void evoluir2()
{

inti, j, k, X, y, z, num;
double min;

for(i=1;i <= BEST; i++) //Seleciona e armazena as 'BEST' melhores soluAgApes da
populaA8A£o anterior
{
min = 99999999;
for(j = 1; j <= POP; j++)
if(custo[j][0] < min)

min = custo[j][0];
num = j;

}
custo[num][0] = 99999999;
for(j=1;j <= ROT ; j++)
for(k = 0; k <= TAM; k++)
storeO[i][j][K] = popO[num][j1[K];

}

for(i = 1; i <= BEST,; i++) //copia de volta na populacao
for(j=1;j <= ROT ; j++)
for(k = 0; k <= TAM; k++)

XXi

popO[i][j][k] = storeO[i][i][k];

for(i = BEST + 1; i <= POP; i++)

{

}

x =rnd(1, BEST);

y =rnd(1, BEST);

z =rnd(1, ROT);

for(k = 0; k <= TAM; k++)

{
for(j=1;j<zj++)
{
popO[il[il[k] = storeO[X][I[K];
} popO[i+1][j][k] = storeO[y][j](K];
for(j = z; j <= ROT,; j++)
popO[i][j][k] = storeO[y][j][K];
popO[i+1][j][k] = storeO[x][j](K];
}
}

for(i = 2; i <= POP; i++) // mutacdes
for(j=1; j <= ROT; j++)

for(k = 1; k <= TAM; k++)
if(randomico(1) <= PMUT)
popO[i][jlI[k] = rnd(0,N); //na loja

if(randomico(1) <= PMUT)
popO[i][j][0] = rnd(1,TIPO);// no tipo do caminhao

for(i = 2; i <= POP; i++) // troca entre rotas
for(j=1; j <= ROT; j++)
for(k = 1; k <= TAM; k++)
if(randomico(1) <= PTROCA)
{

z =rnd(2, POP);

y =rnd(1, TAM);

x=popO[illzllyl;

popOi][z][y] = popO[i]fil[kl;
} popO[i][j][k] = x;

for(i = 2; i <= POP; i++) // troca na rota
for(j=1; j <= ROT; j++)
for(k = 1; k <= TAM; k++)
if(randomico(1) <= PTROCA)

z =rnd(1, TAM);

x = popO[ilfilizl;
popOifillz] = popO[i]fi(Kl;
POopO[i]{il(k] = x;

for(i=1;i <= POP; i++)

for(j=1; j <= ROT; j++)

xxii

for(k = 1; k <= TAM; k++)
pop[i]{il(k] = O;

void saida(int num)

{

inti, j, p, n;

FILE *argsaida;
char nome[100];

sprintf(nome, "/home/winckler/guilherme?2/saida/saida2.txt"); // dados das lojas
argsaida = fopen(nome,"w");

for(i=1;i <= ROT; i++)
if(popO[num][i][1] > O)
{
p=0;
n=1,
fprintf(argsaida, "0\n");
for(j=1;j <= TAM; j++)
if(p == 0)
{

fprintf(argsaida, "%d\n", popO[numl][i][j]);
if(popO[numl[i][i] > 0)

P=5
}
else
{
if(popO[numl[[i][j] > 0)
{
fprintf(argsaida, "%d\n", popO[num][i][j]);
p=j
else
n++;
}

}

for(=1;j<=n; j++)

fprintf(argsaida, "0\n");

fprintf(argsaida, "\n");
}

fclose(argsaida);

sprintf(nome, "/home/winckler/guilherme?2/saida/cam?2.txt"); // caminhoes utilizados em
cada rota
argsaida = fopen(nome,"w");
for(i=1;i<=ROT; i++)
if(popO[numl][i][1] > O)
fprintf(argsaida, "%d\n\n\n\n\n\n\n", popO[num][i][0]);
fclose(argsaida);

xXXiii

sprintf(nome, "/home/winckler/guilherme2/saida/detrota2.txt"); // caminhoes utilizados em

cada rota

argsaida = fopen(nome,"w");
for(i=1;i<=ROT; i++)
if(popO[num][i][1] > O)
fprintf(argsaida, "%d\t%If\t%If\n",i, distrota[num][i], tempo[num][i]);

fclose(argsaida);

sprintf(nome, "/home/winckler/guilherme2/saida/detloja2.txt");
argsaida = fopen(nome,"w");
for(i=1;i<=N;i++)

for(j = 1; j <= VMAX; j++)
fprintf(argsaida, "%d\t%lIf", i, hora[num][i][j]);
fprintf(argsaida, "\t%If\n", entrega[num][i]);

}

fclose(argsaida);

sprintf(nome, "/home/winckler/guilherme2/saida/rotas2.txt");
argsaida = fopen(nome,"w");
fprintf(argsaida, "%If\t%If\t%If\t%If\t%If\n", custo[num][0], custo[num][1], custo[num][2],

custo[num][3], custo[num][4]);

for(i=1;i <= ROT; i++)
if(popO[num][i][1] > 0)
{

fprintf(argsaida, "%d", popO[num][i][0]);
for(j = 1; popO[numlfi][j]; j++)
fprintf(argsaida, "\t%d", popO[num][i][jD;
fprintf(argsaida, "\n");
}

fclose(argsaida);

int main(int argc, char *argv([])

{

inti, j, k, I, g, num, n, count;
int rank, size;
double bestc, crot;

FILE *argentrada;
char nome[100];
MPI_Status status;

printf("Numero ");
scanf("%d", &num);
srand(num);

sprintf(nome, "/home/winckler/guilherme2/DadosTXT/Dados28-02.txt"); // dados das

lojas

argentrada = fopen(nome,"r");
fscanf(argentrada, "%d", &N);

XXV

for(i=0; i<= N; i++)

{
fscanf(argentrada, "%lf", &X[i]);
fscanf(argentrada, "%lf", &YT[i]);
fscanf(argentrada, "%lf", &d[i]);
fscanf(argentrada, "%lf", &custofaixa[i][1]);
fscanf(argentrada, "%lf", &custofaixal[i][2]);
fscanf(argentrada, "%lf", &custofaixa[i][3]);
fscanf(argentrada, "%lf", &delta[i][1]);
fscanf(argentrada, "%lf", &delta[i][2]);
fscanf(argentrada, "%lf", &delta[i][3]);
fscanf(argentrada, "%lf", &hi[i]);
fscanf(argentrada, "%lf", &hfli]);
fscanf(argentrada, "%d", &carretali]);

}

fclose (argentrada);

ROT =0;

crot = 0.0;

for(i=1;i<=N; i++) //calcula 0 numero maximo de rotas permitido
crot = crot + df[i];

crot = (crot/ 14) + N;

ROT = (int)crot;

MPI_Init(&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

if(rank == 0)
{
for(i=1;i < size; i++)
{
n = rnd(1,1000);
MPI_Send(&n, 1, MPI_INT, i, MPITAG, MPI_COMM_WORLD);
}
}
else
{
MPI_Recv(&num, 1, MPI_INT, 0, MPITAG, MPI_COMM_WORLD, &status);
srand(num);
}

for(i=0; i <= POP; i++)
for(j = 0; j <= ROT; j++)
for(k = 0; k <= TAM; k++)

{
PopOIil[j][k] = O;
} popl[iljlk] = O;

for(i=0; i <= POP; i++)
for(j = 0; j <= ROT; j++)
for(k = 0; k <= TAM; k++)
{

XXV

inicial

storeO[i][j][K] = O;
storel[i][j][K] = O;

}

for(i=0; i <= POP; i++)
for(j = 0; j <= N; j++)
entregali][j] = 0;

calcdist();
calctempop();

cap[1] = 28.0;
cap[2] = 14.0;

cap[3] =7.0;

bestc = 9999999999.0;

num=1;
gerar();

count=1;

for(g = 1; g <= GER; g++)

bestc = 9999999999.0;
num=1;

if(g ==
{

1)

sprintf(nome, "/home/winckler/guilherme/AG.txt"); // carrega solucao

argentrada = fopen(nome,"r");

for(i=1;i <= ROT; i++)

{
for(j=0; j <= TAM; j++)

fscanf(argentrada, "%d", &popO[1][il[iD);

for(j=0; j <= TAM; j++)

fscanf(argentrada, "%lf", &pop1[1][il[j]);

}
fclose (argentrada);

}

for(i=1; i <= ROT; i++)
for(j=1;j <= TAM; j++)

pop1[1][i][i] = O;

atribui();

arrumar();

calccusto();

j=0;

for(i=1;i <= POP; i++)

if(custoli][0] < bestc)

XXVi

{
bestc = custo[i][O];
num = i;
=1

}

if((j == 1)&&(rank == 0))
printf("g: %d p: %d Total: %.69 Fret: %.5g Falt: %.5g Jorn: %.5g Jan:
%.5g\n", g, num, custo[num][0], custo[num][1], custo[num][2], custo[num][3], custo[num][4]);

if(custo[num][2] < 40000)

falt = custo[num][2] / 2 / 40000 + 0.5;
else

falt = 1.0;

if(custo[num][3] < 20000)
jorn = custo[num][3]/ 2 / 20000 + 0.5;

else

jorn =1.0;

if(custo[num][4] < 20000)

jan = custo[num][4] / 2 / 20000 + 0.5;
else

jan =1.0;

if(count == FREQ)
{
if(rank < size - 1)
for(i=1;i <= ROT; i++)
for(j=0; j <= TAM; j++)

MPI1_Send(&popO[num][i][j], 1, MPI_INT, rank +
1, MPITAG, MPI_COMM_WORLD);

MPI1_Send(&popl[num][i][j], 1, MPI_INT, rank +
1, MPITAG, MPI_COMM_WORLD);

}

for(i=1;i <= ROT; i++)
for(j = 0; j <= TAM; j++)
{

else

MPI1_Send(&popO[num][i][j], 1, MPIL_INT, O,
MPITAG, MPI_COMM_WORLD);

MPI1_Send(&popl[num][i][j], 1, MPIL_INT, O,
MPITAG, MPI_COMM_WORLD);

}
if(rank > 0)
for(i=1;i <= ROT; i++)
for(j = 0; j <= TAM; j++)

MPI1_Recv(&popO[POP][i][j], 1, MPI_INT, rank -
1, MPITAG, MPI_COMM_WORLD, &status);

MPI1_Recv(&pop1[POP][i][j], 1, MPIL_INT, rank -
1, MPITAG, MPI_COMM_WORLD, &status);

}

XXVii

else
for(i=1;i <= ROT; i++)
for(j = 0; j <= TAM; j++)
{
MPI1_Recv(&popO[POP][i][j], 1, MPL_INT, size -
1, MPITAG, MPI_COMM_WORLD, &status);

MPI1_Recv(&popl[POP][i][j], 1, MPL_INT, size -
1, MPITAG, MPI_COMM_WORLD, &status);

}
count = 0;
}
if(g == GER)
if(rank > 0)
{
for(i=1;i <= ROT; i++)
for(j = 0; j <= TAM; j++)
MPI1_Send(&popO[numl[i][j], 1, MPI_INT, O,
MPITAG, MPI_COMM_WORLD);
MPI1_Send(&popl[num][i][j], 1, MPIL_INT, O,
MPITAG, MPI_COMM_WORLD);
}
if(rank == 0)
{
for(i=1;i <= ROT; i++)
for(j=0; j <= TAM; j++)
{
popO[POPY[il[j] = popO[num][il(];
pop1[POPI[i][j] = popO[num][ilf;
for(k = 1; k < size; k++)
for(i=1;i <= ROT; i++)
for(j = 0; j <= TAM; j++)
{
MPI_Recv(&popO[K][il[i], 1, MPI_INT, k,
MPITAG, MPI_COMM_WORLD, &status);
MPI_Recv(&popl[K][l[l, 1, MPI_INT, k,
MPITAG, MPI_COMM_WORLD, &status);
}
}
if(rank > 0)
{
for(i = 0; i < CUST; i++)
MPI1_Send(&custo[num]][i], 1, MPI_DOUBLE, 0,
MPITAG, MPI_COMM_WORLD);
}
if(rank == 0)
{

for(i = 0; i < CUST; i++)

custo[POP][i] = custo[numl][i];
for(j = 0; j < CUST; j++)

XXViii

for(i=1;i < size; i++)
MPI_Recv(&custo[i][j], 1, MPI_DOUBLE, i,

MPITAG, MPI_COMM_WORLD, &status);

}

evoluir2();
count++;

}

MPI_Finalize();
return O;

bestc = 9999999999.0;

for(i=1;i <= POP; i++)
if(custol[i][0] < bestc)

bestc = custo[i][O];
num = i;

}

saida(num);
printf("%If\n", custo[num][0]);

Clarke & Wright - o algoritmo a seguir esta adaptado ao Meta-RaPS. Para

torna-lo equivalente a heuristica original, basta fazer o numero de iteragfes

igual a 1:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define NMAX 260
#define TIPO 3
#define FATOR 1.27
#define TAM 4

int GER = 10000;
double PH = 0.85;
double T = 10.0;
double Temp = 1.5;

int N;
double cap[TIPO+1];
int roteiro[NMAX+1][NMAX+2];

/InGmero de geragdes

/Iprobabilidade de se seguir a regra heuristica
/ljornada do motorista em h

/ltempo médio de parada em h

/Inumero de lojas

XXiX

int listai[(NMAX*(NMAX-1))/2], listaj[(NMAX*(NMAX-1))/2];

int carreta[NMAX+1]; /l'loja aceita carreta

double horario]NMAX+1]; //horario no qual a loja i é atendida

double hi[NMAX+1], hffNMAX+1]; /ljanela de recebimento da loja i

double listae[(NMAX*(NMAX-1))/2];

double d[NMAX+1]; /[demanda

double dem[NMAX+1]; //[demanda temporaria

double bdem[NMAX+1]; /larmazena a demanda temporaria da melhor solucao
double distiNMAX+1][NMAX+1]; /[distancia entrer lojas

double tempop[NMAX+1][NMAX+1]; //tempo de percurso entre as lojas

double X[NMAX+1], YINMAX+1]; /Iposicéo das lojas

double custofaixalNMAX+1][TIPO+1], deltal]NMAX+1][TIPO+1]; //custos de transporte
int camrota[NMAX+1]; /ltipo de caminha que percorre a rota

double fretep[NMAX+1]; /[frete pago por rota

int setup[NMAX+1][TIPO+1]; /lentregas iniciais

int bcamrota[NMAX+1];

int broteiro[NMAX+1][NMAX+2]; /larmazena melhores valores
int bsetup[NMAX+1][TIPO+1];

double bfretep[NMAX+1];

double randomico(double n)

{
double x;
X = (n *rand() / (RAND_MAX+1.0));
return x;

}

int rnd(double min, double max) //Gera um numero inteiro aleatorio entre min e max
b

int x;

double range = 0.0;

range = (max - min + 1);

X = min + (int) (range*rand() / (RAND_MAX+1.0));

return x;

}

double mod(double x)
if(x >=0)

return x;

return -x;

}

int contno(int r)

{ -
inti;
int cont = 0;

for(i = 1, roteiro[r][i] > O; i++)
cont++;

XXX

return cont;

}
void calcdistxy()
inti, j;
for(i = 0; i <= N; i++)
for(j = 0; j <= N; j++)

dist[i][j] = 6377*(acos(sin(X[i])*sin(X[j]) + cos(X[i])*cos(X[j])*cos(mod(Y([j]-
Y[iD)))*FATOR,;
}

double veloc(double x)

{
double vel,
vel =16.952 + 0.3096*x + (-0.0008)*pow(x,2) + 0.0000007*pow(x,3);
if(vel > 60)
vel = 60;
return vel;
}
void calctempop()
{
inti, j;
for(i=0;i<=N; i++)
for(j=0;j <= N; j++)
tempopli][j] = dist[i][j] / veloc(dist[i][j]);
}
void calchorario(int r)
{
int i
double tempo;
tempo = hi[roteiro[r][1]];
horario[roteiro[r][1]] = tempo;
for(i = 2; roteiro[r][i] > O; i++)
{
if(tempo + Temp + tempoplroteiro[r][i-1]][roteiro[r][i]] >= hi[roteiro[r][i]])
tempo = tempo + Temp + tempop[roteiro[r][i-1]][roteiro[r][i]];
else
tempo = hi[roteiro[r][i]];
horario[roteiro[r][i]] = tempo;
}
}

void entregasini()

inti, j, k;

XXXI

for(i = 1; i <= N; i++)

for(j = 1;j <= TIPO; j++)
setup[i][j] = 0;

for(i=1;i <= N; i++) //para cada loja

setupl[i][1] = setup[i][1] + 1;
dem([i] = dem(i] - cap[1];

setupl[i][2] = setup[i][2] + 1;
dem([i] = demli] - cap[2];

{
if(carreta[i] == 1) //se a loja aceita carreta
while(dem[i] > cap[1])
}
else //se nao aceita carreta
while(dem[i] > cap[2])
}
}
}
}
void entregasini2()
{
inti, j, Kk, x;

for(i = 1; i <= N; i++)

for(j = 1;j <= TIPO; j++)
setup[i][j] = 0;

for(i=1;i <= N; i++) //para cada loja

{

if(carreta[i] == 1) //se a loja aceita carreta

while(dem[i] > cap[1])

if(dem([i] > cap[1] + cap[2])
{

setup[i][1] = setup[i][1] + 1;
dem([i] = dem(i] - cap[1];

}
else if(dem[i] > cap[1] + cap[3])

else

X =rnd(1, 2);
setupli][x] = setupli][x] + 1;
dem([i] = demli] - cap[x];

X =rnd(1, 3);
setup[i][x] = setupli][x] + 1;
dem([i] = demli] - cap[x];

XXXii

}

else //se nao aceita carreta
while(dem[i] > cap[2])

if(dem([i] > cap[2] + cap[3])
{

setupl[i][2] = setup[i][2] + 1;

dem([i] = dem[i] - cap[2];

}

else

{
X =rnd(2, 3);
setup[i][x] = setupli][x] + 1;
dem([i] = demli] - cap[x];

}

double calcpeso(int r) //calcula o peso de uma rota

{

int i
double peso;
peso = 0.0;

for(i = 1, roteiro[r][i] > O; i++)
peso = peso + dem|[roteiro[r][i]];

return peso;

}
double calcpesof(int r) //calcula o peso de uma rota na solucao final
{

int i

double peso;

peso = 0.0;

for(i = 1, roteiro[r][i] > O; i++)

peso = peso + bdem[roteiro[r][i]];

return peso;

}

double calcciclo(int r) //calcula o ciclo de uma rota

{
inti;
double ciclo;

ciclo = tempoplroteiro[r][O]][roteiro[r][1]];

XXXiii

for(i = 2; ((roteiro[r][i-1] > O) || (roteiro[r][i] > 0)); i++)
{

if(hi[roteiro[r][1]] + ciclo + Temp +
(tempoplroteiro[r][i-1]][roteiro[r][i]]) >= hi[roteiro[r][i]])

ciclo = ciclo + Temp + (tempop][roteiro[r][i-1]][roteiro[r][i]]);

else
ciclo = hi[roteiro[r][i]] - hi[O];
}
return ciclo;
}
double calcdist(int r) //calcula a distancia de uma rota
{
int i
double distancia;
distancia = 0.0;
for(i = 1; (roteiro[r][i-1] > O || roteiro[r][i] > 0); i++)
distancia = distancia + dist[roteiro[r][i-1]][roteiro[r][i]];
return distancia;
}
int checkcarr (int r)
{
inti, c;
c=1;
for(i = 1, roteiro[r][i] > O; i++)
if(carreta[roteiro[r][i]] == 0)
c=0;
return c;
}
int checkpeso(int x)
{
inti, p;
double pesot;
p=1

pesot = calcpeso(x);
if(checkcarr(x) == 1)

if(pesot > cap[1])
p=0;
}

else

if(pesot > cap[2])
p=0;

XXXIV

}
return p;
}
double calccusto()
{
inti, j, n;
double c, d;
double cust = 0.0;
[*for(i=1;i <= N; i++)
if(roteiro[i][1] > 0)
for(j = 1; (roteiro[i][j] > 0)||(roteiro[i][j-1]); j++)
cust = cust + dist[roteiro[i][j-1]][roteiro[i][j]] * (4 - camrotali]);
for(i=1;i<=N; i++)
for(j=1; j <= TIPO; j++)
cust = cust + setup([i][j] * 2 * dist[O][i] * (4 - camrotali]);*/
for(i =1;i<=N; i++)
{
c=0;
n=0;
fretep[i] = 0.0;
for(j = 1; roteiro[i][j] > O; j++)
n++;
if(custofaixa[roteiro[i][j]][camrotal[i]] > c)
{
¢ = custofaixa[roteiro[i][jJ][camrotal[i]];
d = delta[roteiro[i][j]][camrota]i]];
}
}
if(n > 0)
{
cust=cust+c+ (n-1)*d;
fretep[i] = fretep[i] + c + (n - 1) * d;
}
}
for(i =1;i<=N; i++)
for(j=1; j <= TIPO; j++)
cust = cust + setup[i][j] * custofaixali][j];
return cust;
}
void saida()
{

inti, j, n;

FILE *argsaida;
char nome[100];

sprintf(nome, "c:/TF/saida.txt");
argsaida = fopen(nome,"w");

XXXV

for(i=1;i<=N; i++)
if(broteiro[i][1] > 0)
{

for(j = 0; j <= 5; j++)
fprintf(argsaida, "%d\n", broteirol[i][j]);
fprintf(argsaida, "\n");
}
}
for(i=1;i<=N; i++)
for(j=1; j <= TIPO; j++)

{
n = bsetupli][j];
while(n > 0)
fprintf(argsaida, "0\n%d\nO\nO\nO\NO\N\n", i);
n--;
}
}

for(i=1;i<=N; i++)
fprintf(argsaida, "0\n0\nO\NO\nO\nO\N\n");

fclose(argsaida);
/I gera arquivo de entrada para o0 AG
sprintf(nome, "c:/TF/AG.txt");

argsaida = fopen(nome,"w");

for(i=1;i<=N;i++)
for(j=1; j <= TIPO; j++)

{
n = bsetupli][j];
while(n > 0)
{
fprintf(argsaida, "%d\t", j);
fprintf(argsaida, "%d\tO\tO\tO\n", i);
fprintf(argsaida, "0O\t");
fprintf(argsaida, "%IA\tOMO\MO\n", caplj]);
n--;
}
}

for(i=1;i<=N; i++)
if(broteiro[i][1] > O)
{

fprintf(argsaida, "%d\t", bcamrotali]);
for(j=1;j <= TAM; j++)
fprintf(argsaida, "%d\t", broteirol[i][j]);
fprintf(argsaida, "\n");
fprintf(argsaida, "0O\t");
for(j=1;j <= TAM; j++)
fprintf(argsaida, "%If\t", bdem[broteirol[i][j]]);

XXXVi

fprintf(argsaida, "\n");

for(i = 1; i <= 2*N; i++)
fprintf(argsaida, "0\tO\tO\tO\n™);

fclose(argsaida);

/I gera arquivo com os caminhoes utilizados
sprintf(nome, "c:/TF/cam.txt");
arqgsaida = fopen(nome,"w");

for(i=1;i<=N; i++)
if(broteiro[i][1] > 0)
fprintf(argsaida, "%d\n\n\n\n\n\n\n", bcamrotali]);

for(i=1;i<=N;i++)
for(j=1; j <= TIPO; j++)

{
n = bsetupli][j];
while(n > 0)
fprintf(argsaida, "%d\n\n\n\n\n\n\n", j);
n--;
}
}

for(i=1;i<=N; i++)
fprintf(argsaida, "0\n\n\n\n\n\n\n");
fclose(argsaida);

sprintf(nome, "c:/TF/rotas.txt");
argsaida = fopen(nome,"w");

for(i=1;i<=N;i++)
for(j=1; j <= TIPO; j++)

{
n = bsetupli][j];
while(n > 0)
{
fprintf(argsaida, "%d\t", j);
fprintf(argsaida, "%d\n", i);
n--;
}
}

for(i=1;i<=N; i++)
if(broteiro[i][1] > 0)
{

fprintf(argsaida, "%d\t", bcamrotali]);
for(j=1;j <= TAM; j++)
if(broteirol[i][j] > 0)
fprintf(argsaida, "%d\t", broteirol[i][j]);
fprintf(argsaida, "\n");

XXXVii

}

fclose(argsaida);

int main()

{

inti, j, k, r, g, num, n, nn;

int tipo, tipo2, rota, rota2, posicao, posicao2;
int norotas[NMAX+1][3];

int checkh, checke;

double peso[NMAX+1];

double pesot;

double ciclo[NMAX+1];

double economia[NMAX+1][NMAX+1];

double ciclot;
double custo;
double bestc;
double cf;

FILE *argentrada;
char nome[100];

for(i = 0;i <= NMAX; i++)
d[i] = 0.0;

sprintf(nome, "c:/TF/Dados22-02.txt"); // dados das lojas

argentrada = fopen(nome,"r");

fscanf(argentrada, "%d", &N);

for(i=0; i<= N; i++)

{
fscanf(argentrada, "%lf", &X[i]);
fscanf(argentrada, "%lf", &YT[i]);
fscanf(argentrada, "%lf", &d[i]);
fscanf(argentrada, "%lf", &custofaixal[i][1]);
fscanf(argentrada, "%lf", &custofaixali][2]);
fscanf(argentrada, "%lf", &custofaixal[i][3]);
fscanf(argentrada, "%lf", &delta[i][1]);
fscanf(argentrada, "%lf", &delta[i][2]);
fscanf(argentrada, "%lf", &delta[i][3]);
fscanf(argentrada, "%lf", &hi[i]);
fscanf(argentrada, "%lf", &hfli]);
fscanf(argentrada, "%d", &carretali]);

}

fclose (argentrada);

printf("Numero ");

scanf("%d", &num);
srand(num);

bestc = 999999999.9;
cap[1] = 28.0;

cap[2] = 14.0;
cap[3] =7.0;

XXXViii

for(i = 0;i <= N; i++)
for(j=0; j <= N; j++)

dist[i][j] = 0.0;
economiali][j] = 0.0;
}
for(i = 0;i <= (N*(N-1))/2; i++)
{
listae[i]= 0.0;
listai[i] = 0;
listaj[i] = 0;
}
for(i =1;i<=N; i++)
{
bdem([i] = 0.0;
fretepli] = 0.0;
}

printf("Calculando Distancias...\n");
calcdistxy();
calctempop();

printf("Calculando Economias...\n");
[*for(i = 1;i <= N; i++) // calcula economias (distancia)
for(j=1;j<=N; j++)
if(i =)
economia[i][j] = dist[O][i] + dist[j][0] - dist[i][j];*/
for(i = 1;i <= N; i++) // calcula economias 2 (custo de frete)
for(=1, j<=N; j++)
if(i =)

if(custofaixa[i][1] >= custofaixa[j][1])

economia]i][j] = custofaixal[j][1] - delta[i][1];

else

economia]i][j] = custofaixali][1] - delta[j][1];

}

printf("Gerando Lista...\n");
for(k = 1; k <= (N*(N-1)/2); k++)
{

for(i=1;i<=N; i++)
for(j = i+1; j <=N; j++)
if(leconomiali][j] > listae[K])

listai[k] = i;
listaj[k] = j;
listae[k] = economiali][j];

XXXIX

}
economia]listai[K]][listaj[k]] = 0.0;
}

for(g = 1; g <= GER; g++)

for(i=0;i<=N; i++)

{
pesoli] = 0.0;
ciclo[i] = 0.0;
horarioli] = 0.0;

}

tipo = 0;
tipo2 = 0;
rota = 0;
rota2 = 0;
posicao = 0;
posicao?2 = 0;
checkc = 0;
checkh = 0;

for(i = 0; i <= N; i++)
for(j = 0; j <= N+1; j++)
roteiroli][j] = O;

for(i=1;i<=N;i++)
deml[i] = d[i];

for(i=1;i<=N;i++)
for(j=1;j <= TIPO; j++)
setup[i][j] = 0;

if(g ==1)
entregasini();
else
entregasini();

for(i=0;i<=N; i++)
for(j=0;j<=3;j++)
norotasli][j] = 0;

r=1;
for(k = 1; k <= (N*(N-1)/2); k++)

if((randomico(1) < PH) || (g == 1))
{

if((norotas[listai[k]][0] >= 2) && (norotas[listaj[k]][0] >= 2))
{

tipo = norotas]listai[k]][0];
rota = norotasllistai[k]][1];
posicao = norotas]listai[K]][2];
tipo2 = norotas]listaj[k]][0];

x|

rota2 = norotasllistaj[Kk]][1];
posicao2 = norotas]listaj[K]][2];

if(tipo == 3) //se o primeiro € final de rota

for(i = 1; roteiro[rota][i] > O; i++)
roteiro[O][i] = roteiro[rota][i];
if(tipo2 == 2)
for(i = 1; roteiro[rota2][i] > O; i++)

roteiro[O][posicao + i] = roteiro[rota2][i];

if(tipo2 == 3)

j = posicao + 1;
for(i = posicao2;i>=1; i--)

{
roteiro[0][j] = roteiro[rota2][i];
jtt;
}
}
if(tipo == 2) //se o primeiro € inicio de rota
if(tipo2 == 2)
=1
for(i = contno(rota2); i >= 1; i--)
{
roteiro[0][j] = roteiro[rota2][i];
jtt;
}

for(i = 1; roteiro[rota][i] > O; i++)
roteiro[0][j+i-1] = roteiro[rota][i];

}
if(tipo2 == 3)
{
for(i = 1; roteiro[rota2][i] > O; i++)

roteiro[O][i] = roteiro[rota2][i];
for(i = 1; roteiro[rota][i] > O; i++)

roteiro[0][posicao? + i] = roteiro[rota][i];

}

}

pesot = calcpeso(0);

ciclot = calcciclo(0);

calchorario(0);

checkh = 1,

for(i = 1, roteiro[O][i] > O; i++)
if(horario[roteiro[O][i]] > hf[roteiro[O][i]])

checkh = 0;

checkc = checkpeso(0);

if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))

xli

}

for(i = 1, roteiro[O][i] > O; i++)

roteiro[rota][i] = roteiro[O][i];
norotas[roteiro[rota][i]][2] = i;
norotas[roteiro[rota][i]][1] = rota;
norotas[roteiro[rota][i]][0] = 1;
if(roteiro[0][i+1] == 0)
norotas[roteiro[rota][i]][0] = 3;

}

norotas[roteiro[rota][1]][O] = 2;

for(i = 1; roteiro[rota2][i] > O; i++)
roteiro[rota2][i] = O;

/lpeso[rota] = pesot;
ciclo[rota]= ciclot;

for(i = 1;i <= N+1; i++) //apaga roteiro temporario

roteiro[0][i] = O;

}
else if(norotasllistai[k]][0] >= 2 && norotas]listaj[k]][0] == 0)

{

tipo = norotas]listai[k]][0];
rota = norotas]listai[k]][1];
posicao = norotas]listai[k]][2];

if(tipo == 3)

roteiro[rota][posicao+1] = listaj[K];

pesot = calcpeso(rota);

ciclot = calcciclo(rota);

calchorario(rota);

checkh = 1;

for(i = 1; roteiro[rota][i] > O; i++)
if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])

checkh = 0;

checkc = checkpeso(rota);
if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))

norotas|listaj[K]][0] = 3;
norotasflistaj[K]][1] = rota;
norotasflistaj[k]][2] = posicao + 1;
norotas|listai[K]][0] = 1;
/lpeso[rota] = pesot;
ciclo[rota]= ciclot;

}

else
roteiro[rota][posicao + 1] = 0;

}
if(tipo == 2)

for(i=N;i>=2;i-)
roteiro[rota][i] = roteiro[rota][i-1];
roteiro[rota][1] = listaj[K];

xlii

}

pesot = calcpeso(rota);
ciclot = calcciclo(rota);
calchorario(rota);
checkh = 1;
for(i = 1; roteiro[rota][i] > O; i++)
if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])
checkh = 0;

checkc = checkpeso(rota);
if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))

norotas|listaj[K]][0] = 2;

norotasflistaj[k]][1] = rota;

norotasflistaj[K]][2] = 1;

norotasflistai[K]][0] = 1;

for(i = 2; roteiro[rota][i] > O; i++)
norotas[roteiro[rota][i]][2]++;

ciclo[rota] = ciclot;

else
for(i = 1; roteiro[rota][i] > O; i++)
roteiro[rota][i] = roteiro[rota][i+1];

}
else if(norotasllistaj[k]][0] >= 2 && norotas]listai[k]][0] == 0)

{

tipo = norotasilistaj[k]][O];
rota = norotas]listaj[K]][1];
posicao = norotas]listaj[K]][2];

if(tipo == 3)

roteiro[rota][posicao + 1] = listai[k];

pesot = calcpeso(rota);

ciclot = calcciclo(rota);

calchorario(rota);

checkh = 1,

for(i = 1; roteiro[rota][i] > O; i++)
if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])

checkh = 0;

checkc = checkpeso(rota);

if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))

norotas|listai[K]][0] = 3;
norotasflistai[k]][1] = rota;
norotasflistai[k]][2] = posicao + 1;
norotas|listaj[K]][0] = 1;
/lpeso[rota] = pesot;

ciclo[rota]= ciclot;

xliii

}

else
roteiro[rota][posicao + 1] = 0;
}
if(tipo == 2)
for(i=N;i>=2;i-)
roteiro[rota][i] = roteiro[rota][i-1];
roteiro[rota][1] = listai[K];
pesot = calcpeso(rota);
ciclot = calcciclo(rota);
calchorario(rota);
checkh = 1;
for(i = 1; roteiro[rota][i] > O; i++)
if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])
checkh = 0;
checkc = checkpeso(rota);
if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
norotasflistai[K]][0] = 2;
norotasflistai[k]][1] = rota;
norotasflistai[k]][2] = 1;
norotas|listaj[K]][0] = 1;
for(i = 2; roteiro[rota][i] > O; i++)
norotas[roteiro[rota][i]][2]++;
/lpeso[rota] = pesot;
ciclo[rota] = ciclot;
}
else
for(i = 1; roteiro[rota][i] > O; i++)
roteiro[rota][i] = roteiro[rota][i+1];
}

}
else if((norotas[listai[k]][0] == 0)&&(norotas(listaj[k]][0] == 0))

roteiro[0][1] = listai[k];
roteiro[0][2] = listaj[k];
pesot = calcpeso(0);
ciclot = calcciclo(0);
calchorario(0);

checkh = 1;
for(i = 1, roteiro[O][i] > O; i++)
if(horario[roteiro[O][i]] > hf[roteiro[O][i]])
checkh = 0;

checkc = checkpeso(0);
if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
norotasflistai[K]][0] = 2;

norotas|listaj[K]][0] = 3;
norotasflistai[K]][1] = r;

xliv

norotasflistaj[K]][1] = r;
norotas|listai[K]][2] = 1;
norotasflistaj[K]][2] = 2;

roteiro[r][1] = roteiro[O][1];
roteiro[r][2] = roteiro[0][2];

ciclo[r] = ciclot;
r++;

}
roteiro[0][1] = O;
roteiro[0][2] = O;

}

for(i = 1; i <= N-1, i++) // elimina roteiros vazios
if(roteiro[i][1] == 0)
{

for(j_= i_+1; ((roteiro[j][1] == 0)&&(j < N)); j++)

1=
for(k = 1; roteiro[j][K] > 0; k++)
{
roteiroli][k] = roteirol[j][K];
roteiro[j][k] = O;
pesol[i] = pesolj];
cicloli] = ciclo[j];
}
}

for(i = 1; roteiro[i][1] > O; i++)
pesoli] = calcpeso(i);

r=0;
for(i=1;i<=N; i++)
if(roteiro[i][1] > 0) // conta 0 numero de rotas
r++;

for(i = 1; i <= N; i++) //cria as rotas individuais
if(norotasli][0] == 0)
{

roteiro[r+1][1] = i;
peso[r+1] = calcpeso(r+1);
ciclo[r+1] = calcciclo(r+1);
r++;

}

for(i = 1; i <= N; i++) //atribui os caminhoes adequados a cada rota

if(roteiro[i][1] > 0)
{

camrota[i] = 1;

if(pesoli] <= cap[2])
camrota[i] = 2;

if(pesoli] <= cap[3])
camrota[i] = 3;

xlv

custo = calccusto();

if(custo < bestc)

{
bestc = custo;
for(i=1;i<=N; i++)
{
for(j=1; j <= TIPO; j++)
bsetupli][j] = setup[i][j];
bcamrota[i] = camrotali];
for(j = 0; j <= N; j++)
broteiro[i][j] = roteiro[i][j];
bdem[i] = dem(i];
bfretepli] = fretep]i];
}
}

printf("G = %d\tTotal: %lf\n", g, bestc);

saida();
for(i= 1; i <= N; i++) // imprime os roteiros formados
{
if(broteiro[i][1] > 0)
{
printf("R%d - 0 ", i);
for(j = 1; (broteiro[i][j] > O || broteiro[i][j-1] > 0) ; j++)
printf("%d ", broteirol[i][j]);
printf("\n");
}
}

cf=0;
for(i=1;i<=N;i++)
for(j=1; j <= TIPO; j++)

{
n = bsetupli][j];
while(n > 0)
{
printf("%d, F = %If\n", i, custofaixali][j]);
n--;
}
}

for(i=1;i<=N;i++)
for(j = 1; j <= N+1; j++)
roteiroli][j] = broteiroli][j];

for(i = 1; broteiro[i][1] > O; i++)
printf("R%d - T = %d, P = %lf, T = %lf, D = %lf, F = %If\n", i, bcamrota]i],
calcpesof(i), calcciclo(i), calcdist(i), bfretepli]);
printf("Total: %lf\n", bestc);
return O;

