
GUILHERME GUIDOLIN DE CAMPOS

RESOLUÇÃO DE UM PROBLEMA DE ABASTECIMENTO COM AUXÍLIO DE

META-HEURÍSTICAS E COMPUTAÇÃO PARALELA

São Paulo
2004

Trabalho de Formatura apresentado à

Escola Politécnica da Universidade de

São Paulo para a obtenção do Diploma

de Engenheiro de Produção

GUILHERME GUIDOLIN DE CAMPOS

RESOLUÇÃO DE UM PROBLEMA DE ABASTECIMENTO COM AUXÍLIO DE

META-HEURÍSTICAS E COMPUTAÇÃO PARALELA

São Paulo
2004

Trabalho de Formatura apresentado à

Escola Politécnica da Universidade de

São Paulo para a obtenção do Diploma

de Engenheiro de Produção

Orientador:

Prof. Dr. Hugo T. Y. Yoshizaki

FICHA CATALOGRÁFICA

Campos, Guilherme Guidolin de

Resolução de um problema de abastecimento com auxílio
de meta-heurísticas e computação paralela / Guilherme Guidolin
de Campos. – São Paulo, 2004.

104 p.

Trabalho de Formatura - Escola Politécnica da Universida-
de de São Paulo. Departamento de Engenharia de Produção.

1. Administração de materiais 2. Distribuição física do esto-

que 3. Algoritmos genéticos 4. Programação paralela I. Univer-
sidade de São Paulo. Escola Politécnica. Departamento de
Engenharia de Produção II. t.

AGRADECIMENTOS

Ao professor Hugo por toda a ajuda e orientação desde a definição do tema

deste trabalho até a revisão final do mesmo.

Ao professor José Carlos Vaz pela orientação nas etapas iniciais do trabalho e

à professora Débora Ronconi pelo direcionamento e conselhos importantes.

À Patrícia Belfiore pela ajuda no entendimento do problema e levantamento de

dados e informações sobre a empresa.

Ao Prof. Kazuo Nishimoto e ao Antônio Russo pela disponibilização das

instalações do Cluster da Naval para a execução dos experimentos

computacionais e ao Gabriel Winckler pela ajuda na operação do mesmo.

À Cintia Celidônio pela paciência, incentivo e auxílio fundamental na elaboração

deste trabalho.

À toda minha família e amigos que em algum momento me aconselharam e

incentivaram, contribuindo e tornando possível a realização deste trabalho

RESUMO

O presente trabalho propõe a utilização de meta-heurísticas e computação

paralela para a resolução do problema de roteamento de veículos no processo

de abastecimento das unidades de um grupo varejista com restrições

operacionais. O problema consiste na determinação de um conjunto de rotas

econômicas que devem atender a necessidade de abastecimento de cada uma

das lojas do grupo respeitando todas as restrições, principalmente janelas de

tempo, duração da jornada e frota heterogênea. A estratégia adotada para a

resolução do problema consiste na utilização de uma adaptação da heurística

construtiva proposta por Clarke & Wright (1967) como solução inicial.

Posteriormente são utilizados alguns algoritmos mais sofisticados buscando-se

melhorias, dentre eles o algoritmo genético paralelo resolvido com o auxílio de

um cluster de computadores. Os resultados obtidos demonstram que a

heurística construtiva básica apresenta bons resultados para o problema, mas

ainda pode ser melhorada com o uso das técnicas mais sofisticadas. A

aplicação dos métodos propostos, proporcionou uma redução no custo total da

operação da ordem de 11% comparando-se com as soluções utilizadas

originalmente pela empresa.

ABSTRACT

The present work considers the utilization of meta-heuristics and parallel

computing to solve the vehicle routing problem in the branches supply process

of a retail group with operational constraints. The problem is about finding a set

of economic routs which must meet the supplying needs of each of the group’s

branches respecting all the constraints, especially time windows, rout length and

heterogeneous fleet. The adopted strategy for the problem solution consists in

the utilization of an adaptation of the constructive heuristics proposed by Clarke

& Wright (1967) as initial solution. Then some more sophisticated algorithms are

applied in order to achieve improvements, such as parallel genetic algorithms

supported by a cluster of computers. The results obtained show that the basic

constructive heuristics presents good results for the problem, but it still can be

improved by applying more sophisticated techniques. The use of the proposed

methods, provided about 11% reductions in the total cost of operations when

compared to the original solutions applied by the company.

SUMÁRIO

INTRODUÇÃO ___ 1

1. DESCRIÇÃO DA EMPRESA E DEFINIÇÃO DO PROBLEMA_________ 2

1.1. A EMPRESA__ 2
1.1.1. Descrição do Processo de Abastecimento_________________________________ 4

1.2. DIAGNÓSTICO DO PROBLEMA__ 8

2. REVISÃO DA LITERATURA__________________________________ 11

2.1. PROBLEMAS DE TRANSPORTE __ 11
2.1.1. Problema do Caixeiro Viajante – PCV ___________________________________ 12
2.1.2. Problemas de Roteamento de Veículos __________________________________ 14
2.1.3. Variações dos Problemas___ 15

2.2. MÉTODOS DE SOLUÇÃO __ 19
2.2.1. Dificuldade de Solução___ 20
2.2.2. Estratégias e Métodos de Solução______________________________________ 21
2.2.3. Modelo de Fisher e Jaikumar __ 24
2.2.4. A Heurística de Clarke & Wright__ 27
2.2.5. Algoritmos Meta-RaPS ___ 33
2.2.6. Algoritmos Genéticos __ 35

2.3. COMPUTAÇÃO PARALELA __ 39
2.3.1. Introdução e Conceitos Básicos __ 40
2.3.2. Níveis de Paralelização __ 41
2.3.3. Clusters___ 42
2.3.4. Biblioteca de Paralelização MPI __ 44

2.4. ALGORITIMO GENÉTICO PARALELO____________________________________ 45
2.4.1. AGs Paralelos Mestre-Escravo___ 46
2.4.2. AGs Paralelos de Múltiplas Populações__________________________________ 47

3. MODELAGEM DO PROBLEMA _______________________________ 49

3.1. CLASSIFICAÇÃO DO PROBLEMA_______________________________________ 50

3.2. PRINCIPAIS PARTICULARIDADES DO MODELO __________________________ 52

4. LEVANTAMENTO DE DADOS ________________________________ 55

4.1. DISTÂNCIAS __ 55

4.2. VELOCIDADE DOS VEÍCULOS ___ 59

4.3. FROTA DE VEÍCULOS___ 61

4.4. DEMANDA __ 64

4.5. JANELAS DE RECEBIMENTO __ 65

5. RESOLUÇÃO DO MODELO__________________________________ 67

5.1. ALGORITMO ADAPTADO DE CLARKE AND WRIGHT ______________________ 67
5.1.1. Atendimento da Demanda __ 68
5.1.2. Cálculo das Economias __ 69
5.1.3. Frota Heterogênea __ 70
5.1.4. Restrições no Recebimento ___ 72

5.2. ALGORITMO ADAPTADO META-RAPS __________________________________ 73

5.3. ALGORITMO GENÉTICO __ 75

5.4. ALGORITMO GENÉTICO PARALELO ____________________________________ 83

6. ANÁLISE DOS RESULTADOS________________________________ 86

6.1. SOLUÇÃO ATUAL DA EMPRESA _______________________________________ 86

6.2. COMPARAÇÃO ENTRE OS MÉTODOS___________________________________ 88

6.3. IMPLEMENTAÇÃO DA SOLUÇÃO _______________________________________ 96

7. CONCLUSÕES ___ 100

BIBLIOGRAFIA __ 102

ANEXOS___ I

ANEXO A – Biblioteca MPI ___ i

ANEXO B – O Cluster___ vi

ANEXO C – Resultados Detalhados___ ix

ANEXO D – Código Fonte dos Programas ______________________________________ xiii

LISTA DE FIGURAS

FIGURA 1.1 - ÁREA DE ATUAÇÃO DO GRUPO NO BRASIL (ELABORADO PELO AUTOR) _______________ 4
FIGURA 1.2 - FLUXOGRAMA DA OPERAÇÃO DE ABASTECIMENTO (ELABORADO PELO AUTOR) _________ 5
FIGURA 1.3 - PROCESSO DE ABASTECIMENTO SIMPLIFICADO (ELABORADO PELO AUTOR)____________ 9
FIGURA 2.1 - TRÊS PROBLEMAS CLÁSSICOS DE DISTRIBUIÇÃO (ELABORADO PELO AUTOR) _________ 11
FIGURA 2.2 - GRAFO DE UM PCV E SUA SOLUÇÃO (EXTRAÍDO DE GOLDBARG, LUNA, 2000) ________ 13
FIGURA 2.3 - EXEMPLO DE FORMAÇÃO DE ROTAS PARA UM DEPÓSITO (ELABORADO PELO AUTOR) ___ 15
FIGURA 2.4 - ESTRATÉGIAS PARA SOLUÇÃO DO PRV (EXTRAÍDO DE GOLDBARG E LUNA, 2000) ____ 21
FIGURA 2.5 - CONFIGURAÇÃO INICIAL: UMA ROTA PARA CADA PONTO (ELABORADO PELO AUTOR) ___ 28
FIGURA 2.6 - CONFIGURAÇÃO APÓS A JUNÇÃO DOS PONTOS NUMA MESMA ROTA (ELABORADO PELO

AUTOR) __ 29
FIGURA 2.7 - ESQUEMA SIMPLES DE UM CLUSTER BEOWULF (ELABORADO PELO AUTOR) __________ 43
FIGURA 2.8 - TOPOLOGIA BÁSICA DE UM AG MESTRE-ESCRAVO (ADAPTADO DE CANTÚ-PAZ, 1999) 47
FIGURA 2.9 - ESQUEMA DE UM AG PARALELO DE MÚLTIPLAS POPULAÇÕES. AS SUB-POPULAÇÕES

TROCAM INDIVÍDUOS COM SEUS VIZINHOS NESTE ESQUEMA (ADAPTADO DE CANTÚ-PAZ,

1999)__ 48
FIGURA 3.1 - PROCESSO DE ABASTECIMENTO SIMPLIFICADO (ELABORADO PELO AUTOR)___________ 50
FIGURA 3.2 - (A) APENAS UM ROTEIRO PODE PASSAR POR CADA LOJA; (B) POSSIBILIDADE DE DOIS

ROTEIROS PASSAREM PELA MESMA LOJA (ELABORADO PELO AUTOR)________________ 53
FIGURA 4.1 - LOCALIZAÇÃO DAS LOJAS E CD DO GRUPO (ELABORADO PELO AUTOR) _____________ 56
FIGURA 4.2 - CORRELAÇÃO ENTRE O FATOR DE CORREÇÃO E A DISTÂNCIA (ELABORADO PELO AUTOR) 58
FIGURA 4.3 - GRÁFICO DE DISTRIBUIÇÃO DOS FATORES DE CORREÇÃO (ELABORADO PELO AUTOR) __ 59
FIGURA 4.4 - GRÁFICO VELOCIDADE MÉDIA DESENVOLVIDA DE ACORDO COM A DISTÂNCIA DO TRECHO

(ELABORADO PELO AUTOR) ___ 60
FIGURA 5.1 - EXEMPLO DO CÁLCULO MODIFICADO DAS ECONOMIAS (ELABORADO PELO AUTOR) _____ 70
FIGURA 5.2 - CORRELAÇÃO ENTRE NÚMERO DE ITERAÇÕES E QUALIDADE DA SOLUÇÃO (ELABORADO

PELO AUTOR) __ 83
FIGURA 6.1 - EXEMPLO DE ROTEIROS FORMADOS PELO AG PARALELO (A, B) E PELO META RAPS (C, D)

PARA O CENÁRIO BASE (ELABORADO PELO AUTOR) ______________________________ 89
FIGURA 6.2 - COMPARAÇÃO ENTRE AS ROTAS FORMADAS PARA 4A FEIRA (ELABORADO PELO AUTOR)_ 93
FIGURA 6.3 - NOVO PROCESSO DE ABASTECIMENTO _______________________________________ 96

LISTA DE TABELAS

TABELA 2.1 - DIFERENTES ASPECTOS DE UM PROBLEMA DE ROTEIRIZAÇÃO (ADAPTADO DE ASSAD 1988)

___ 49
TABELA 4.1 - LISTA DE VEÍCULOS UTILIZADOS NAS OPERAÇÕES (ELABORADO PELO AUTOR) ________ 61
TABELA 4.2 - DETALHES DOS VEÍCULOS (ELABORADO PELO AUTOR) ___________________________ 62
TABELA 4.3 - EXEMPLO DE CUSTOS DE FRETE POR REGIÃO E MODELO DE VEÍCULO (ELABORADO PELO

AUTOR) __ 63
TABELA 4.4 - CONSOLIDAÇÃO DAS CARGAS NO DIA ESCOLHIDO (ELABORADO PELO AUTOR) ________ 64
TABELA 4.5 - DESCRIÇÃO DOS TIPO DE CARGA (ELABORADO PELO AUTOR)______________________ 65
TABELA 4.6 - JANELAS DE RECEBIMENTO (ELABORADO PELO AUTOR) __________________________ 66
TABELA 6.1 - CUSTOS AJUSTADOS DOS CENÁRIOS (ELABORADO PELO AUTOR)___________________ 88
TABELA 6.2 - RESUMO DOS CASOS CONSIDERADOS (ELABORADO PELO AUTOR)__________________ 88
TABELA 6.3 - CUSTO TOTAL DAS SOLUÇÕES (ELABORADO PELO AUTOR)________________________ 90
TABELA 6.4 - RESTRIÇÕES VIOLADAS NAS SOLUÇÕES PARA O CASO BASE (ELABORADO PELO AUTOR) 91
TABELA 6.5 - TEMPOS DE PROCESSAMENTO (ELABORADO PELO AUTOR) _______________________ 92

1

INTRODUÇÃO

Todo sistema logístico tem como objetivo proporcionar aos clientes os bens

desejados no local, tempo e quantidade que melhor atendam às suas

necessidades, incorrendo no menor custo possível. Para tanto, as empresas

devem tomar uma série de decisões que envolvem principalmente a estratégia

de localização de suas fábricas e centros de distribuição, estratégia de estoque

envolvendo previsão de demanda, compras, políticas de armazenagem, etc. e

estratégia de transporte. Uma vez definidas as principais estratégias logísticas

da empresa e estabelecida sua estrutura física, cada atividade deve ser

planejada de forma a se atingir um nível de excelência operacional que garanta

o uso eficiente dos recursos disponíveis oferecendo o melhor nível de serviço

pelo menor custo.

Segundo Ballou (2001), dentre todas as atividades logísticas, o transporte é

aquela que absorve a maior parcela dos custos. A seleção do modal de

transporte a ser utilizado, a definição de políticas de entrega, consolidação das

cargas e roteirização, e programação dos veículos estão entre as atividades

mais importantes a serem executadas neste campo. Quanto maior o número de

produtos diferentes com que uma empresa trabalha, menores os prazos e maior

o número de pontos de entrega, mais complexa se tornam estas atividades.

A empresa em questão é um destes casos onde a complexidade da atividade

logística faz com que esta seja uma preocupação central. Assim, estaremos

propondo neste trabalho alguns modelos para determinar de forma estruturada,

maneiras melhores de se transportar as mercadorias dos centros de distribuição

para as lojas do grupo. Buscaremos assim, diminuir os custos da atividade de

transporte e melhorar o nível de serviço, medido pelo número de restrições que

são violadas, tais como o atendimento total da demanda, horários de entrega,

entre outras.

2

1. DESCRIÇÃO DA EMPRESA E DEFINIÇÃO DO PROBLEMA

Neste capítulo descreveremos a empresa estudada e definiremos o problema a

ser resolvido no decorrer do trabalho. Num primeiro momento detalharemos a

estrutura da empresa e seus processos, dando uma visão geral da mesma. Na

segunda parte será definido o problema a ser solucionado e os objetivos a

serem alcançados pelo presente trabalho.

Para preservar em sigilo as informações consideradas estratégicas pela

empresa, e de acordo com sua própria solicitação, o nome da companhia não

será revelado, assim como alguns dados ao longo deste trabalho serão

modificados.

É importante deixar claro neste momento que o autor não realizou seu estágio

nesta companhia como é de costume na elaboração dos Trabalhos de

Formatura. No entanto, a escolha do tema, a definição do problema a ser

abordado, e a troca de informações necessárias para a elaboração deste

trabalho foram feitas de comum acordo com a gerência da empresa

responsável pelo processo logístico. Além disso, o tema escolhido para o

trabalho apresenta forte relação com as duas iniciações científicas realizadas

pelo autor ao longo dos últimos anos nas áreas de logística e de computação

paralela.

1.1. A EMPRESA

O Grupo é um dos pioneiros no setor varejista do Brasil. Atuando a décadas, é

hoje um dos maiores grupos no varejo com grande participação em um

mercado altamente fragmentado. Ao longo de sua história o grupo cresceu

constantemente de forma orgânica e através de aquisições. Atualmente, além

de suas operações comerciais, a empresa patrocina diversas atividades sociais

3

e culturais.

A Cadeia de Suprimentos, foco deste trabalho, é uma área estratégica que

engloba as funções logísticas e comerciais de todo o grupo. A estrutura

logística é responsável pelo abastecimento de produtos às lojas, desde a

gestão dos estoques até o fluxo físico de mercadorias. Ela é capaz de agregar

valor à operação melhorando a receita, reduzindo a ruptura (falta de produtos

nas lojas) e diminuindo custos de transportes e investimentos em estoque.

A Companhia opera diversos tipos e tamanhos de lojas com eficiência, graças a

uma estrutura centralizada, em forma de Centros de Distribuição (CDs). O

Grupo ultrapassou o patamar de 80% de centralização dos estoques em 2003,

um percentual próximo aos padrões internacionais. Outro benefício da

centralização foi a redução nos investimentos em estoque, por conta do

aumento do giro dos produtos, além do maior controle sobre o processo de

abastecimento das lojas.

A estrutura logística do grupo é formada por 10 CDs, que totalizam uma

capacidade de armazenagem superior a 200 mil metros quadrados de área

construída. A companhia opera CDs multi-categoria, que atendem a

determinadas regiões com raio de atuação de até 500 quilômetros em 6 capitais

brasileiras. Em São Paulo, possui quatro CDs especializados em categorias

específicas, dado o tamanho do mercado que justifica esta segmentação.

4

Figura 1.1 - Área de atuação do Grupo no Brasil (elaborado pelo autor)

Na próxima seção iremos detalhar a forma como estes centros de distribuição

realizam o abastecimento das lojas do Grupo e como ocorre este processo,

desde o recebimento dos pedidos até a entrega efetiva.

1.1.1. Descrição do Processo de Abastecimento

De acordo com suas necessidades, os gerentes de loja ou seção fazem

diariamente seus pedidos. A entrega pode ser feita de duas formas: via

depósito ou diretamente pelo fornecedor com o pedido sendo feito via EDI

(Electronic Data Interchange). Após o fechamento do faturamento uma Central

de Programação (CP) decide como será feita a distribuição das cargas do CD

às lojas através de roteirização, de acordo com os veículos disponíveis. A

separação das cargas solicitadas pela CP é feita pela parte operacional dos

CDs. Caso a carga a ser entregue exceda a capacidade dos veículos, é feita

uma revisão, ou seja, estuda-se a possibilidade de alterar o tipo modelo do

veículo ou combinar e alterar os roteiros. O objetivo final é atender aos pedidos

5

dos clientes nos prazos adequados com o pleno atendimento da demanda e

sem que nenhuma restrição seja violada.

A apresenta uma simplificação dos fluxos dos processos que ocorrem na

Central de Programação.

Figura 1.2 - Fluxograma da operação de abastecimento (elaborado pelo autor)

Todo o processo de abastecimento tem início com o pedido feito pelo gerente

das lojas que avalia o estoque disponível para todos os itens vendidos e

comunica a Central de Programação sobre sua necessidade. Em algumas

situações, dependendo do tipo de produto e da quantidade solicitada, o pedido

6

segue diretamente para o fornecedor via EDI que se responsabiliza pela

entrega para a loja.

Há um algoritmo que gera esses pedidos automaticamente, porém os dados

são sistematicamente alterados pelo gerente/chefe da seção. O algoritmo leva

em conta apenas os estoques nas lojas. Algumas lojas consideram uma

questão logística, o arredondamento de paletes, já outras não interferem nos

pedidos e são lojas que têm menos ruptura.

Uma vez finalizados os pedidos, estes são encaminhados para a Central de

Programação que inicia o processo de formação de cargas após o fechamento

do faturamento. Em seguida são formados os roteiros que serão utilizados na

entrega dos produtos para as lojas.

Atualmente, o processo de formação de cargas e roteirização utiliza alguns

itinerários determinados anteriormente que são ligeiramente adaptados de

acordo com a demanda específica do dia. O cálculo está vinculado a

parâmetros de equipamentos de movimentação, ocupação do veículo e

capacidade física da loja. A formação da carga segue os seguintes parâmetros

cadastrados no sistema:

• Cadastro de loja: tipo de veículo, tipo de equipamento, prioridade de

entrega;

• Cadastro de CD para encaixe: informar quais CDs podem realizar

encaixes;

• Peso/m3 por equipamento/Loja: paletes, gaiolas, rolltainers;

• Cadastro por veículo: capacidade máxima por veículo/região (capital,

interior, interestadual), em peso e m3;

• Cadastro de itinerários: cadastro de agrupamento de lojas de acordo com

o tipo de veículo;

7

Depois de efetuado o processamento do faturamento, o sistema segue as

rotinas, considerando sempre o maior tipo de veículo e liberando para usuário

as cargas com 90% da ocupação. Neste processo são realizadas as seguintes

etapas:

1) Com base nos parâmetros, o melhor veículo é escolhido para 1

entrega, ou seja, 1 loja;

2) Se houver cadastro de CDs para encaixe, o sistema otimiza a carga

das duas ou mais categorias para 1 entrega (1 loja);

3) Se os encaixes não proporcionarem a otimização máxima da carga, o

sistema buscará a composição de acordo com o agrupamento de

itinerários;

4) Se não houver possibilidade de encaixe, o sistema formará cargas de

acordo com os agrupamentos de itinerários;

5) Finalmente, busca-se a otimização com veículo alternativo. Caso não

seja possível, aguarda-se o próximo faturamento.

Este procedimento realizado pelo sistema tem a grande vantagem de ser muito

rápido e bastante intuitivo para os operadores. No entanto, ele é relativamente

fraco quanto à otimização dos roteiros, uma vez que não considera diferentes

combinações de lojas nem seqüências alternativas para serem incluídas em

cada um deles.

A atividade de transporte é conduzida por terceiros, uma vez que o Grupo

tomou a decisão de não possuir veículos próprios, dada a dificuldade de se

gerenciar de forma eficiente uma frota do tamanho necessário. O transporte é

feito por 40 transportadoras terceirizadas, que mantêm cerca de 500 veículos

dedicados ao abastecimento das lojas do Grupo. A média é de mil viagem por

dia, tendo sido atingido o recorde de mais de 3 mil viagens numa única data.

8

1.2. DIAGNÓSTICO DO PROBLEMA

Com uma operação do porte mencionado, há anos o Grupo investe em

sistemas de previsão de demanda e controle de estoque para atender de

maneira adequada seus clientes. Por outro lado, o procedimento de

abastecimento das lojas é nitidamente deficiente. Tal fato ocorre devido à

complexidade inerente ao problema e à inexistência de ferramentas adequadas

de otimização. Vamos explicar um pouco melhor este problema a seguir.

No final de cada dia, é calculada a necessidade de abastecimento de cada uma

das lojas. Nesta etapa do processo já surgem complicações, pois algumas lojas

da rede funcionam num sistema 24h. Ao mesmo tempo, os centros de

distribuição fazem a contabilização de todas as movimentações que ocorreram

durante o dia (entregas para as lojas e recebimento de fornecedores), e

verificam a disponibilidade de cada um dos itens em estoque. O sistema então

prioriza os pedidos de acordo com uma série de critérios pré-definidos pela

direção, gerando uma lista de tudo que deverá ser entregue no dia seguinte. O

número total de itens a serem entregues ultrapassa uma dezena de milhares.

As lojas trabalham com um conceito chamado de janela de recebimento que

consiste num intervalo de tempo no qual o abastecimento das mesmas deve ser

realizado. Além disso, o volume elevado de carga transportada exige que o

processo de entregas comece cedo, para garantir que todas as lojas sejam

abastecidas num período adequado. Desta forma, o tempo disponível entre o

final do processo de priorização do abastecimento e o início das entregas é

muito reduzido, da ordem de uma hora. Este é o tempo que os funcionários têm

para planejar todas as rotas e decidir que tipo de caminhão irá percorrer cada

uma delas atendendo a totalidade das lojas nos horários adequados.

Uma vez que os roteiros tenham sido planejados, tem início o processo de

9

entrega para as lojas a partir do centro de distribuição. A ilustra de maneira

simplificada um possível resultado da roteirização. Neste caso, a demanda das

5 lojas será entregue através de 2 roteiros, sendo cada um deles percorrido por

um veículo diferente.

Figura 1.3 - Processo de abastecimento simplificado (elaborado pelo autor)

Como podemos ver, esta é uma tarefa enorme e o tempo disponível

inadequado. Assim, a primeira solução encontrada que atenda todas as

restrições do problema (que abordaremos em profundidade mais adiante) é

utilizada, mesmo que não seja a melhor do ponto de vista da otimização dos

recursos.

Neste sentido, o objetivo final deste TF consiste na elaboração de um modelo

para a seleção de veículos, consolidação das cargas e roteirização que atenda

as restrições enfrentadas no abastecimento das lojas, e implementar métodos

de solução que consigam obter resultados melhores do que os atuais no

período de tempo disponível.

10

O resultado esperado deste modelo é que ele permita construir diariamente um

conjunto de roteiros especificando todas as lojas que serão atendidas, a

seqüência de atendimento e o tipo de veículo que atenderá cada um deles,

como na . Caso se consiga realizar estes objetivos a contento, o Grupo vai

estudar a possível implementação da solução proposta através de uma

ferramenta.

Como o problema abordado é extremamente complexo do ponto de vista de

otimização, como veremos adiante, um último objetivo deste trabalho é a

aplicação da Computação Paralela através de um Cluster de computadores na

resolução do mesmo, visando avaliar o potencial desta ferramenta.

O estudo será focado no atendimento das lojas localizadas no estado de São

Paulo a partir do principal centro de distribuição da empresa, o que representam

um total de 323 unidades a serem atendidas. Como nem todas as lojas devem

ser abastecidas todos os dias da semana, escolhemos um dia típico para

utilizar como base para o trabalho. Neste dia, 214 lojas registraram pedidos

para o CD em questão. O escopo deste trabalho também estará restrito à

cargas paletizadas, que podem ser transportadas sem o uso de caminhões

especiais e que compõe a grande maioria das entregas feitas no processo de

abastecimento. Da mesma forma, não serão considerados os pedidos

atendidos diretamente pelos fornecedores, mas apenas aqueles destinados aos

CDs.

11

2. REVISÃO DA LITERATURA

Esta revisão da literatura visa fornecer subsídios à definição clara do problema

e identificação dos melhores métodos disponíveis para sua solução. Nela

discutiremos os problemas de transporte e como o problema de roteirização de

veículos se enquadra nesta categoria, bem como os critérios para a

classificação destes problemas. Na segunda parte buscaremos nos aprofundar

nos métodos de solução existentes para os problemas de roteirização de

veículos. Em seguida será feita uma introdução sobre a computação paralela e

seu uso na solução de problemas complexos. Finalmente será apresentado um

método de solução que combina os algoritmos apresentados com a

computação paralela.

2.1. PROBLEMAS DE TRANSPORTE

Segundo Ballou (2001), embora haja uma grande variedade de problemas de

distribuição, podemos agrupá-los em alguns tipos básicos. Há o problema de

encontrar um caminho através de uma rede onde o ponto de destino é diferente

ao ponto de origem. Há um problema similar onde ocorrem múltiplos pontos de

origem e destino e o problema de roteamento quando os pontos de origem e

destino são exatamente os mesmos ().

Figura 2.1 - Três problemas clássicos de distribuição (elaborado pelo autor)

12

O problema a ser tratado no presente trabalho enquadra-se nesta terceira

categoria, onde se encontram alguns dos problemas clássicos de transporte

como o PRV (Problema de Roteamento de Veículos) e o PCV (Problema do

Caixeiro Viajante), sendo que em ambos os casos os pontos de origem e

destino são coincidentes. A diferença entre eles é que no primeiro, múltiplas

rotas podem ser formadas para percorrer todos os pontos, enquanto no

segundo eles devem ser atendidos por apenas uma rota.

Neste capítulo discorreremos sobre os problemas de transporte e

apresentaremos a definição e alguns conceitos sobre os problemas de

roteamento de veículos. Em seguida, apresentaremos alguns modelos

tradicionais utilizados para o tratamento deste tipo de problema e novos

métodos considerados na sua solução.

2.1.1. Problema do Caixeiro Viajante – PCV

O problema do caixeiro viajante pode ser considerado uma forma mais simples

do problema de roteamento de veículos e, portanto, sua compreensão será útil

na busca de um método de solução eficiente para o mesmo. Na prática, o PCV

pode ser utilizado para representar cada um dos roteiros no processo de

abastecimento, como os da Este é um problema de otimização associado à

determinação dos caminhos ótimos sobre um grafo iniciando e terminando no

mesmo vértice sem nunca repetir uma visita. Assim, o objetivo do PCV é

encontrar em um grafo G = (N, A) o caminho de menor custo.

13

Figura 2.2 - Grafo de um PCV e sua solução (extraído de Goldbarg, Luna, 2000)

Existem diversas formulações para este problema. Dantzig, Fulkerson e

Johnson (1979) formularam o PCV como um problema de programação binária

sobre um grafo G = (N, A), como segue:

 Minimizar ij

n

j

n

i
ij xcz ∑∑

= =

=
1 1

 (1)

sujeito a:

1
1

=∑
=

n

i
ijx Nj ∈∀ (2)

1
1

=∑
=

n

j
ijx Ni ∈∀ (3)

1−≤∑
∈

Sx
Sj,i

ij NS ⊂∀ (4)

}{ 10,xij ∈ Nj,i ∈∀ (5)

Onde a variável binária ijx assume valor igual a 1 se o arco () Aj,i ∈ for

escolhido para integrar a solução, e 0 em caso contrário, ijc é um custo

associado ao arco ()j,i , e S é um subgrafo de G em que S representa o

número de vértices desse subgrafo. As restrições (2) e (3) garantem que cada

ponto da rede tenha um e somente um arco chegado e um arco saindo. O

conjunto de restrições (4) impede o surgimento de sub-rotas na solução ótima.

Problema do caixeiro viajante com janela de tempo - PCVJT

14

Um dos problemas relacionados ao PCV é o Problema do Caixeiro Viajante

com Janela de Tempo - PCVJT. Ao associar uma variável tij a cada arco do

grafo G = (N, A), representando a duração do percurso entre os nós i e j, pode-

se imaginar que a chegada a cada vértice i, Ni ∈ do grafo G é restrita ao

intervalo [ai, bi], denominado de janela de tempo. Assim, são consideradas

viáveis apenas as soluções que atendem a restrição de janela de tempo. Este

modelo é mais parecido com o problema que estamos tentando resolver, pois

conforme visto no item 1, as lojas operam com janela de tempo.

2.1.2. Problemas de Roteamento de Veículos

Para que possamos compreender melhor os problemas de roteamento de

veículos (PRV), é necessário definir os sistemas de roteamento. Segundo

Goldbarg e Luna (2000), considera-se um sistema de roteamento um conjunto

organizado de meios com o objetivo de atender pontos de demanda localizados

em arcos ou vértices de alguma rede de transportes.

Na operação de abastecimento, é necessário um plano efetivo e flexível de

entregas, de modo a atender às especificações referentes ao nível de eficiência

do serviço de transporte. Este plano ou roteiro deve ser definido

quantitativamente e atender da melhor maneira possível todas as restrições do

problema. Dentro desse contexto, surge um grupo de problemas de

característica combinatória e de grande dificuldade de solução, que se

denominam problemas de roteamento de veículos. O objetivo do planejamento

será estabelecer um roteamento e sequenciamento, e o emprego de veículos

que conduzam à minimização do custo da atividade. Segundo Goldbarg e Luna

(2000), a idéia básica do problema de roteamento é, com o uso de veículos,

visitar uma série de clientes ao menor custo possível, atendendo a todas as

demais imposições do problema.

15

Figura 2.3 - Exemplo de formação de rotas para um depósito (elaborado pelo autor)

2.1.3. Variações dos Problemas

Apesar do conceito de roteamento de veículos não ser de difícil compreensão,

existe um grande número de variações do mesmo. Ronen apud Cunha (1997)

afirma que os problemas pertencentes a esta classe podem ser agrupados em

três categorias básicas:

• Problemas relativos ao transporte de passageiros: programação de linha

de ônibus, sistemas de táxi, transporte de idosos e deficientes (dial-a-

ride), transporte escolar, entre outros;

• Problemas de prestação de serviços: equipes de reparos, coleta de lixo,

entrega postal, serviço de limpeza de vias, etc;

• Problemas de transporte de cargas: entrega e coleta de produtos em

múltiplas localidades.

O problema de transporte de carga pode ser classificado ainda segundo uma

série de critérios que englobam, entre outros:

16

• Tamanho, composição, e estrutura de custos da frota;

• Número de bases de origem e destino para os veículos;

• Demanda (entrega ou coleta), determinística ou estocástica;

• Atendimento total ou parcial da demanda;

• Aleatoriedade dos locais e horários de entrega e coleta;

• Limites de distância ou duração dos roteiros.

Assad (1988) propõe a classificação dos problemas de roteirização de veículos

segundo alguns aspectos básicos do problema:

Aspectos do problema Variações

Demanda

- entrega, coleta ou backhaul

- tipos diferentes de produtos

- atendimento total ou parcial

- prioridade de clientes

- contratação de serviços de terceiros

- demanda conhecia ou aleatória

- entregas periódicas ou única

Frota de Veículos

- homogenia ou heterogênea

- restrição de capacidade / carregamento

- vínculo entre veículo e base

- compatibilidade ente veículo e produto

- número fixo ou variável de veículos

- veículo em um ou múltiplos depósitos

Pessoal

- duração da jornada de trabalho

- opção de horas extras

- número fixo ou variável de motoristas

- hora e local do início da jornada

- paradas (almoço, descanso)

- possibilidade de viagens maiores que 1 dia

17

Programação

- janelas de tempo (rígidas ou flexíveis)

- tempo de carga e descarga

- horário de abertura e fechamento

- dias da semana para o atendimento de clientes

Informações

- disponibilidade de dados geográficos e redes

viárias

- recursos de localização de endereços

- tempos de viagem

- localização dos veículos

- informações sobre o crédito dos clientes
Tabela 2.1 - Diferentes aspectos de um problema de roteirização (adaptado de Assad

1988)

Dada a grande variedade de aspectos do problema de roteirização de veículos,

fica evidente a dificuldade de se estabelecer uma classificação única para todos

os problemas. Na prática, cada caso poderá assumir quaisquer combinações

destes fatores tornando-se quase único. No entanto existem alguns casos mais

gerais cuja compreensão nos ajudará no esforço de encontrar o método mais

adequado de solução para o problema específico que estaremos abordando

neste trabalho.

Problema de Roteamento de Veículos (PRV): Tem como objetivo encontrar um

conjunto de rotas, iniciando e terminando em um mesmo ponto, de forma a

minimizar a distância total percorrida e/ou o número de veículos utilizados. A

formulação deste problema inclui basicamente as seguintes restrições:

• Nenhum veículo deve sair do ponto inicial mais que uma vez;

• Todos os veículos devem retornar ao ponto de origem;

• Todos os destinos devem ser visitados uma única vez.

Problema de Roteamento de Veículos com Capacidade (CPRV): o PRV com

capacidade obedece à mesma formulação do problema original com a inclusão

18

de uma restrição de volume transportado nas rotas limitado pela capacidade de

carga do veículo. Neste problema, a cada ponto da rede é atribuída uma

demanda que deverá ser atendida pela rota a que ele pertença.

• O total das entregas feitas por um veículo não pode exceder sua

capacidade;

• A demanda de todas as lojas deve ser atendida.

Problema de Roteamento de Veículos com Janela de Tempo (PRVJT): Trata-se

uma generalização do PRV. A solução do PRVJT deve garantir que o tempo de

coleta e entrega do usuário não viole a restrição de janela de tempo. Este

problema esta sujeito às restrições originais do PRV além de:

• Os tempos máximo e mínimo de viagem de cada veículo devem ser

respeitados;

• Os destinos não podem ser visitados após o final da janela de

recebimento.

Problema de Roteamento de Veículos com Frota Heterogênea (PRVFH): o PRV

com frota heterogênea é um caso mais próximo da realidade, pois considera

que os veículos utilizados no roteamento possuem características diferentes.

Assim, podemos considerar que tanto os custos fixos de uma frota, quanto os

variáveis, como combustível, etc, são diferentes de acordo com o modelo do

veículo. Da mesma maneira, a capacidade de carga de cada um deles pode ser

diferente, o que torna o problema bem mais complexo. Além de decidir quais as

melhores rotas para realizar as entregas devem ser estabelecidos os veículos

que irão percorrer cada uma delas.

Problema de Roteamento de Veículos com Frota Fixa (PRVFF): O problema

básico de roteamento de veículos considera a existência de um número

ilimitado de veículos disponíveis para roteirização. No entanto, muitas vezes as

empresas possuem um determinado número de veículos próprios e não tem a

19

opção conseguir mais veículos. Neste caso, podemos considerá-lo como um

problema de roteamento com frota fixa, onde o aproveitamento de cada veículo

disponível passa a ser fundamental para garantir o atendimento da demanda.

• O número de veículos utilizados não pode exceder sua disponibilidade

Certamente existem outros casos do PRV que podem ser obtidos pela

combinação destas e de outras características do problema, tais como as

descritas na . Mesmo assim, a compreensão dos aspectos fundamentais destes

problemas básicos apresentados ajudará tanto na especificação do problema a

ser resolvido quanto na identificação dos métodos de solução mais apropriados.

A solução do problema PRV e todas as suas variações consiste em uma rota ou

em um conjunto de rotas que especifica a seqüência dos destinos que deverão

ser visitados. No entanto, para se obter uma boa solução para o problema é

necessário investir um considerável tempo no desenvolvimento de um

programa computacional apropriado. Quase todos os modelos implementados

para o PRV utilizam procedimentos heurísticos, que conseguem obter soluções

boas para problemas reais, uma vez que os modelos otimizantes não

conseguem chegar a uma solução para classe de problemas dada a sua grande

complexidade e característica combinatória. Na próxima seção estaremos

analisando os métodos de solução encontrados na literatura e sua

aplicabilidade ao problema abordado neste trabalho.

2.2. MÉTODOS DE SOLUÇÃO

Existe na literatura uma grande variedade de métodos utilizados na solução dos

problemas de transporte, especialmente o de roteirização de veículos. Um dos

fatores que contribui para este fato é a grande dificuldade de se encontrar

soluções ótimas para o problema devido a sua alta complexidade e

possibilidade de variações. Assim, alguns métodos que conseguem bons

20

resultados para um grupo de problemas não se saem tão bem para outros com

algumas variações em sua formulação. Desta forma, muitos pesquisadores se

esforçam no desenvolvimento de novos métodos e aplicações.

A grande maioria dos métodos de solução existentes se enquadra em uma de

três categorias: métodos otimizantes, heurísticas construtivas e métodos

iterativos de melhoria ou meta-heurísticas. Nesta seção iremos abordar alguns

destes métodos com o intuito de estabelecer a melhor estratégia de solução

para o problema tratado neste trabalho.

2.2.1. Dificuldade de Solução

Os problemas de roteamento de veículos variam quanto a sua complexidade

dependendo do número de variáveis e restrições que o problema considera em

sua formulação. Alguns problemas podem ser considerados quanto a sua

complexidade como intratáveis. Mesmo com o uso de computadores teríamos

dificuldades muito grandes com esses problemas. Não se trata somente de

aumentar a capacidade da máquina, pois a dificuldade reside na natureza

combinatória desse tipo de problema que, até hoje, tem impedido a concepção

de algoritmos eficientes de solução. Esses problemas são tratados como NP-

Árduos (do inglês NP-Hard). Em outras palavras, o esforço computacional para

a sua resolução cresce exponencialmente com o tamanho do problema, dado

pelo número de pontos a serem atendidos. Para esses problemas complexos,

na busca por boas soluções, são utilizadas técnicas para alcançar soluções

próximas da ótima, como as heurísticas. A , abaixo, mostra como a pesquisa

operacional desenvolveu estratégias para tratar cada tipo de problema.

21

Figura 2.4 - Estratégias Para Solução do PRV (Extraído de Goldbarg e Luna, 2000)

Devido ao seu caráter fortemente combinatório, a maioria dos problemas

práticos de roteamento de veículos (PRV) é do tipo NP-Árduo (Goldbarg e

Luna, 2000). Como visto na , este tipo de problema poder ser tratado com

algoritmos exatos, relaxações e algoritmos aproximativos. Os algoritmos exatos

são usados apenas em casos de PRV com poucas variáveis e restrições.

Normalmente, este tipo de resolução vem acompanhado de técnicas de

relaxações, que ajudam a eliminar algumas variáveis e restrições do problema.

Em outros casos, são utilizados algoritmos aproximativos (heurísticas), que

buscam de maneira simplificada, mas eficiente, soluções que aproximem ao

máximo da solução ótima do problema. A seguir apresentaremos as principais

classificações das estratégias e métodos de solução.

2.2.2. Estratégias e Métodos de Solução

As estratégias de solução para roteirização de veículos são classificadas,

segundo Bodin apud Cunha (1997), da seguinte forma:

1 – Agrupa e Roteiriza (cluster first – route second) – é o procedimento que

primeiramente agrupa os nós de demanda e depois constrói as rotas mais

22

econômicas em cada um destes grupos. Essa estratégia geralmente é utilizada

em problemas básicos com um único deposito na roteirização de veículos.

2 – Roteiriza e Agrupa (route first – cluster second) – incluindo todos os nós de

demanda, primeiro constrói-se uma grande rota sem solução possível, depois

esta é dividida em rotas factíveis e menores. Este modelo já foi usado na

resolução de alguns problemas contendo roteirização com frota heterogênea de

veículos e em outros com varredura de ruas.

3 – Economias ou inserções – procedimento onde se constrói uma solução em

um determinado caminho, sendo que em cada etapa deste processo se

compara a configuração em construção, com uma solução alternativa. A

solução alternativa será a que apresentar maior economia em algum critério

adotado, como custo total, ou a que inserir na rota em construção, entidades da

demanda, de forma menos custosa. Conclui-se o processo quanto todas as

inserções factíveis tiverem sido realizadas.

4 – Melhoria / Troca – procedimento heurístico onde há uma troca de arcos em

cada etapa do processo, buscando uma nova solução com menor custo, este

se repete até que não haja soluções mais econômicas. Este método também é

conhecido como r-opt, onde r é o numero de arcos trocados a cada etapa, todos

os r arcos são trocados até que não haja Nenhuma troca factível que melhore o

custo do problema. Os valores mais usados são r=2 (2-opt) e r=3 (3-opt).

5 – Otimização interativa – para a solução do problema há uma grande

interação humana, este tomador de decisões baseia-se em seu conhecimento

no modelo de otimização, revisando parâmetros e inserindo correções,

aumentando assim a possibilidade de implementação deste método de

resolução. Quem adaptou esse método pela primeira vez na solução de

problemas com roteirização de veículos foi Krolak.

23

6 – Procedimentos exatos – os algoritmos exatos em problemas de roteirização

e a programação do tipo NP-Hard têm sido limitados, com exceção do problema

do caixeiro viajante, que inclui o método de particionamento para a

programação de pessoal e algoritmos exatos para a programação de veículos,

utilizando técnicas de branch and bound e programação dinâmica.

Cunha (1997) classifica os métodos de solução nas seguintes categorias:

• Métodos exatos - garantem uma solução ótima;

• Métodos heurísticos – não garantem uma solução ótima, mas sub-

ótimas, que necessitam de um menor esforço computacional.

• Métodos emergentes – compostos de técnicas mais recentes e

avançadas, baseadas em sistemas especializados, métodos de busca ou

interativos. Exemplos deste método são as meta-heurísticas como

algoritmos genéticos e busca tabu.

A seguir descreveremos sucintamente os principais métodos meta-heurísticos

pesquisados.

Simulated annealing (SA): criada por Kirkpatrik, baseia-se em conceitos da

mecânica estatística, sendo uma analogia do processo de recozimento dos

sólidos. Nos problemas de otimização, os estados correspondem às soluções

possíveis, e a energia, a função a ser minimizada. Sendo que os SAs exploram

as soluções através de geração seqüencial e aleatória, tendo transição por uma

pequena perturbação, as melhores soluções são aceitas e armazenadas. Há

também um parâmetro que equivale a temperatura em um sólido, este

parâmetro é gradualmente reduzido e com ele diminui a probabilidade de

aceitação de soluções piores. Assim sendo, a probabilidade da solução se

deteriorar tende a zero conforme cresce o número de iterações.

24

Algoritmo Genético (AG): proposto por Holland, segue princípios biológicos da

reprodução evolutiva, diferente de outras meta-heurísticas, os AGs não

exploram soluções seqüencialmente e sim populações de soluções, onde a

mais apta será selecionada para as próximas iterações. Os operadores

utilizados nos AGs são a reprodução, que copia os indivíduos de uma geração

para outra, crossover ou cruzamento, que recombina características, e

mutação, que produz pequenas mudanças nos indivíduos garantindo uma

diversidade na população e permitindo a exploração de novas regiões.

Busca Tabu (BT): incorpora conceitos de inteligência artificial, visando orientar a

busca em espaços de solução complexos, simulando usos inteligentes de

memória, com o objetivo de cruzar fronteiras de factibilidade ou otimalidade

local. Suas regras, por serem gerais, são utilizadas como guias em outros

métodos heurísticos. A cada iteração este algoritmo atualiza uma lista de

soluções já visitadas de tal forma que apenas novas alternativas sejam

testadas, aumentando a eficiência computacional.

Com base nas características dos métodos estudados escolhemos para o

trabalho a heurística de Clarke & Wright, por ser a mais amplamente utilizada e

também os Algoritmos Genéticos por serem particularmente adaptáveis à

computação paralela. Em seguida serão apresentados com maiores detalhes

alguns destes.

2.2.3. Modelo de Fisher e Jaikumar

Descreveremos a seguir um método tradicional para a resolução deste tipo de

problema. Trata-se do modelo desenvolvido por Fisher e Jaikumar (1981) em

sua publicação “A Generalized Assignment Heuristics for Vehicle Routing”. Sua

compreensão facilitará o entendimento do problema e dos demais métodos que

utilizaremos neste trabalho.

25

Através deste modelo, pode-se formular um algoritmo que forneça uma solução

exata para um problema de roteamento de veículos. Este modelo também pode

vir acompanhado de técnicas de relaxações quando o problema a ser tratado

for mais complexo.

A seguir, apresentaremos todos os passos que compõem o modelo descrito,

incluindo a sua formulação básica, que serve como base a diversos métodos de

solução. Primeiramente, faz-se necessário descrever algumas condições para

roteirização definidas pelo modelo:

• Nenhum cliente deve deixar de ser atendido;

• Todos os veículos iniciam e terminam seu trajeto no mesmo

ponto;

• Um cliente deve ser atendido por apenas 1 veículo;

• A soma dos custos dos percursos deve ser minimizada.

• A capacidade do veículo deve ser respeitada

Formulação

Será definida agora a formulação do modelo de Fisher e Jaikumar aplicada a

um problema de roteamento de veículos:

Índices:

i, j (1...N) - Endereço do cliente. Local de origem e destino de um percurso;

k (1...M) - Veículo que realizará o percurso.

Parâmetros

M - Número total de clientes de coleta em um dia;

N - Número total de veículos disponíveis;

Cij - Custo de percorrer o percurso i ao j. No caso estudado, este custo está

relacionado à distância a ser percorrida de i a j;

Qk - Capacidade máxima do veículo K (peso ou volume);

26

qi - É a demanda do cliente i.

Função Objetivo:

Sujeito a:

1 –

Esta restrição garante que cada ponto (cliente) seja visitado por apenas um

veículo, tendo em vista que este não necessitaria de mais de um veículo para

coletar suas cargas.

2 –

Esta restrição garante que o ponto de partida (i = 1) receba a visita de todos os

veículos. Ou seja, todos os arcos formados devem passar pelo ponto i = 1. Esta

condição é verdadeira, já que todos os veículos devem retornar a empresa após

realizarem suas coletas, de modo a descarregarem suas cargas.

3 –

Esta restrição assegura que a quantidade coletada não ultrapasse a capacidade

do veículo. Ou seja, limita a utilização de cada veículo até sua capacidade

máxima. Esta restrição é aplicável para o caso estudado.

4 –

Esta restrição garante que os veículos não interrompam suas rotas em um

cliente. Ela relaciona as variáveis binárias X e Y, de modo que se um cliente i

∑ ∑ 







⋅=

ji k
ijkij Xcz

,
min

NiY
M

k
ik ,...,2,1

1

==∑
=

1,
1

==∑
=

iMY
M

k
ik

MkQYq k

N

i
iki ,...,1,

1
=≤⋅∑

=

MkNiYXX
N

j
ik

N

j
jiij ,...,1,...,1,

1 1
====∑ ∑

= =

27

for visitado por um veículo k (Yik = 1), haverá apenas um arco chegando e um

arco saindo deste cliente. Caso contrário, todos os arcos receberão o valor

nulo.

5 –

Esta restrição garante que não sejam formados arcos isolados ou “subrotas”, ou

seja, rotas fechadas isoladas que apesar de respeitarem as restrições

anteriores não apresentem continuidade.

Este modelo é muito bom para entender a formulação básica do problema de

roteamento de veículos, mas a sua aplicação prática se limita a problemas com

poucos pontos a serem visitados e sem nenhum tipo de restrição operacional.

Para resolver problemas maiores e mais complexos devemos utilizar outros

procedimentos, tais como heurísticas construtivas e meta-heurísticas, que

examinaremos no restante deste capítulo.

2.2.4. A Heurística de Clarke & Wright

Alguns problemas de roteirização de veículos são extremamente complexos, de

modo que a solução ótima é quase impossível de ser encontrada. Para tais

problemas, existem muitos modelos heurísticos que conseguem chegar a uma

solução não exatamente ótima, mas aproximada do problema. Dentre estes,

destaca-se o Algoritmo de Clarke & Wright, um modelo heurístico do tipo saving

(economia) que busca substituir arcos mais caros dentro da rota por arcos de

menor custo. O método a ser apresentado nesta seção é uma adaptação do

algoritmo de Clarke & Wright (1962) publicada em “Scheduling of Vehicles From

a Central Depot to a Number of Delivery Points”, “Operations Reseach”.

Este modelo possibilita a inclusão de restrições de janelas de tempo e

{ } MkNSSX
N

Sji
ijk ,...,1,,...,2,1

,
=⊆∀−≤∑

∈

28

capacidades dos veículos, presentes no problema. Segundo Ballou (2001), a

utilização deste algoritmo em problemas com um número limitado de restrições

pode resultar em soluções próximas a 2% em relação à solução ótima. Por fim,

o algoritmo de C&W é uma das técnicas mais conhecidas e utilizadas na

resolução deste tipo de problema. Além de ser capaz de gerar soluções muito

boas, ele é flexível para lidar com restrições, e relativamente rápido para

problemas com um número moderado de paradas (Ballou, 2001).

Assumindo a existência de N pontos a serem visitados (lojas), partindo o

veículo do depósito 0 e retornando ao mesmo após um ciclo. De momento,

vamos admitir que uma solução inicial (a pior) seria a existência de N veículos

disponíveis para realizar estas viagens. Cada veículo viaja do armazém até um

cliente e retorna no fim do expediente. A mostra esta relação para 3 nós (2

clientes), sendo o nó 0 representando o Centro de Distribuição e os nós i e j os

pontos de entrega. A distância total percorrida pelos dois veículos é:

Figura 2.5 - Configuração inicial: uma rota para cada ponto (Elaborado Pelo Autor)

Agora, imaginemos que seja possível eliminar um veículo do roteiro acima, de

forma que apenas um veículo percorra os três nós do problema. Assim, fazendo

ji ddD 00 22 ⋅+⋅=

0

i

j

d0i

d0j

29

o veículo percorrer o trecho 0 – i – j – 0, há uma economia de distância

percorrida, pois ele deixa de viajar um trecho i – 0 e um trecho 0 – j. No entanto,

ele deve percorrer um trecho a mais i – j. Desta forma, a economia gerada por

este novo percurso é representada por:

Figura 2.6 - Configuração após a junção dos pontos numa mesma rota (Elaborado Pelo
Autor)

O método de Clarke & Wright baseia-se na computação destas economias. As

economias representam o quanto a distância ou o custo podem ser reduzidos,

agrupando nós (i e j no exemplo) e criando a rota 0 – i – j – 0, que pode ser

destinada a um veículo.

Para uma rede de N nós, computam-se as economias para cada par de nós,

ordenam-se as economias obtidas em ordem decrescente, e constrói-se um

roteiro ligando estes pares até concluir todas rotas. A descrição completa dos

passos da heurística de Clarke & Wright encontra-se a seguir.

ijjiij dddS −+= 00

0

i

j

d0i

d0j

30

Descrição do Modelo

Nesta seção, descreveremos passo a passo a formulação da heurística de

Clarke & Wright. Veremos também que existem duas versões do algoritmo: uma

paralela e uma seqüencial. Apresentaremos a diferença entre as duas versões

e definiremos qual será a versão usada no problema. Definiremos a seguir as

restrições básicas do problema, tendo em mente que pode haver alterações

dependendo da peculiaridade do problema tratado, por exemplo, a restrição de

janelas de tempo. As restrições básicas do problema são:

• Cada rota inicia e termina no depósito;

• Cada cliente pertence somente a uma rota;

• A demanda de cada cliente não pode exceder a capacidade do veículo;

• A demanda de todos os clientes de uma rota não pode exceder a

capacidade do veículo;

• O tempo total de um roteiro não excede a disponibilidade de tempo total

de jornada de trabalho do motorista.

Objetivo: Atender todos os clientes, minimizando a distância total percorrida e

respeitando todas as restrições impostas pelo problema.

A descrição da heurística segue, passo a passo, a seguir:

1 – Estabelecer como solução inicial para N nós, a formação de N rotas

partindo e chegando ao depósito (esta solução, apesar de sempre factível, é a

mais custosa).

2 – Computar as economias, Sij ligando todos os nós i e j. Para i e j = nós

2,3,...,N. Onde c representa o custo de percorrer o trecho i – j, podendo ser a

distância também; e 0 representa o depósito.

31

3 – Ordenar as economias obtidas em ordem decrescente, formando uma

listagem de pares de nós, com suas respectivas economias.

Neste momento, o modelo de Clarke & Wright pode seguir dois caminhos:

1. Versão Paralela: efetua a melhor união factível;

2. Versão Seqüencial: realiza a extensão máxima de uma rota.

Versão Paralela

4 – Vá para o topo da lista de economias.

5 – Se, ligando os pares o resultado for uma rota factível de acordo com as

restrições do problema, adicione esta ligação para a solução; caso contrário,

elimine-a.

6 – Se ainda houver economias na lista, pule para a próxima e volte ao Passo

5. Se não houver mais economias, vá para o Passo 7.

7 – Fim.

Versão Seqüencial

4 – Vá para o topo da lista de economias.

5 – Se ligando os pares de nós i e j resulta numa rota factível, de acordo com as

restrições do problema, faça esta união.

6 – Defina como rota atual a rota que contém os nós i e j unidos no Passo 5.

7 – Identifique os pontos extremos da rota atual e armazene-os nas variáveis k

e l. (Por exemplo, após o Passo 5, k = i e l = j)

8 – Determine a primeira economia Sik, Skj, Slj ou Sil da lista que pode ser

32

utilizada para estender a rota atual. Note que a rota a ser unida à rota atual

deve necessariamente começar com (0, k) ou (0, l), ou terminar com (k, 0) ou (l,

0). Se for impossível estender a rota atual vá para o Passo 10.

9 – Faça a união dos nós identificados e volte ao Passo 7.

10 – Volte para o topo da lista de economias e encontre a primeira economia

que gere uma união factível. Se nenhuma economia for encontrada vá ao

Passo 12.

11 – Faça a união dos nós identificados e defina como rota atual a rota que

contém esses nós. Volte ao Passo 7.

12 - Fim.

A versão paralela da heurística de Clarke & Wright, por utilizar sempre os arcos

de que proporcionam as maiores economias, gera na grande maioria das vezes

soluções de menor custo que a versão seqüencial. Isto se deve muito pelo fato

da versão seqüencial trabalhar uma rota por vez, tentando esticá-la ao máximo,

fazendo que, com isso, use ligações de nós do final da lista, que geram

menores economias. Por outro lado, esta característica da versão seqüencial

faz com que ela priorize mais o aproveitamento de cada rota, utilizando em sua

solução final, às vezes, menos rotas do que a versão paralela.

Ambas as versões da heurística podem ser utilizadas cabendo a escolha entre

uma versão ou outra ao usuário. A eficiência da versão adotada varia de acordo

com o tipo de problema. Neste trabalho iremos utilizar a versão paralela devido

à produção de soluções de qualidade superior na maioria dos casos.

33

2.2.5. Algoritmos Meta-RaPS

Segundo Moraga et al., incorporar elementos aleatórios em uma heurística

pode aumentar seu desempenho. Este procedimento, além de possuir baixo

tempo de execução quando comparado a outras meta-heurísticas, é simples

podendo ser utilizado em problemas práticos de roteamento de veículos.

O Meta-RaPS integra regras de prioridade (ou regras heurísticas), elementos

aleatórios e amostragem. A cada iteração, este procedimento constrói soluções

viáveis através da utilização de regras de prioridade em uma ordem aleatória.

Após um número de iterações, a melhor solução encontrada é selecionada. A

aplicação do Meta-RaPS em qualquer problema, como um procedimento geral,

consiste em:

1 – Estudar a estrutura do problema e compreender de forma clara as variáveis,

restrições e a otimização necessárias para resolver o problema;

2 – Encontrar regras heurísticas apropriadas à construção de soluções viáveis;

3 – Criar uma lista de próximas atividades disponíveis. Usando a heurística

construtiva e a estrutura do problema, selecionar a próxima atividade. Um

parâmetro percentual de restrição pode ser usado como um mecanismo para

diminuir ou expandir a lista de atividades disponíveis;

4 – Modificar a regra de priorização introduzindo aleatoriedade de acordo com

dois critérios: em alguns ou todos os passos da regra de priorização se

possível; na combinação de regras de priorização;

5 – Rodar a heurística. A cada iteração, a regra de prioridade e sua versão

modificada são combinadas produzindo diferentes soluções viáveis. Após um

número de iterações a melhor solução encontrada é mantida

34

6 – No final de cada iteração o procedimento pode adotar uma técnica de

melhoria na solução encontrada;

7 – O Meta-RaPS pode utilizar mecanismos para interromper a busca. O critério

mais simples usado é estabelecer um número fixo de iterações depois do qual a

melhor solução encontrada é mantida. Entretanto, pode ser implementado um

critério de parada no caso de nenhuma solução melhor sem encontrada depois

de um número de iterações ou parar quando o erro entre as duas melhores

soluções encontradas atingir certo valor predeterminado.

Este procedimento bastante simples permite que uma série de soluções

ligeiramente diferentes daquela gerada pela heurística construtiva original

sejam testadas de maneira bastante rápida. Assim, ampliamos

significativamente o universo de soluções exploradas permitindo que resultados

melhores sejam obtidos.

Moraga et al. propõem três parâmetros básicos para controlar o funcionamento

do Meta-RaPS:

Prioridade – é um fator que varia de 0 a 1 e representa a probabilidade da

regra heurística original ser utilizada. Uma prioridade de 0,25 significa que 25%

dos arcos testados para a formação de um roteiro serão escolhidos a partir da

regra heurística original, que no caso do Clarke & Wright é a lista de economias.

O demais 75% serão escolhidos aleatoriamente entre a lista restrita criada pelo

algoritmo.

Restrição – este parâmetro controla o tamanho da lista restrita na qual o

algoritmo buscará o próximo arco a ser incluído no roteiro. Um valor de 5% para

este parâmetro significa que a lista restrita contará com todos os arcos cuja

economia seja até 5% menor do que aquela proposta pela regra heurística (que

representa a maior economia possível)

35

Melhoria –determina a probabilidade de um procedimento de melhoria ser

utilizado no final de cada iteração. Assim, se este valor for de 20%, a cada 5

soluções geradas, uma será modificada através de melhorias.

2.2.6. Algoritmos Genéticos

Apesar de fornecer boas soluções para problemas de roteamento simples,

quando há maiores restrições, as heurísticas construtivas não chegam a

soluções tão boas. Por isso existem as meta-heurísticas que a cada iteração

buscam melhorar a solução obtida na iteração anterior. Uma dessas meta-

heurísticas utilizada na solução de problemas de roteamento de veículos e uma

série de outras aplicações. São os Algoritmos Genéticos (AGs), que serão

tratados nesta seção. Os AGs foram escolhidos como método para solução do

problema tratado dentre as demais opções vistas no item 1 principalmente pela

sua compatibilidade com a computação paralela como veremos a seguir.

2.2.6.1. Histórico

Nos anos 50, cientistas buscaram soluções para problemas evoluindo uma

população de soluções possíveis através de conceitos da genética e da seleção

natural. Já nos anos 60, Rechenberg criou um método que melhorava

parâmetros reais de mecanismos, chamado “estratégias de evolução”. Em

seguida surge a “programação evolutiva”, onde soluções representadas como

máquinas de estado-finito, eram evoluídas através da mutação, para escolher

ao final a mais adequada. John Holland nos anos 60, baseado no mecanismo

de adaptação da natureza, cria os Algoritmos Genéticos, baseado em um

quadro teórico para controlar essas adaptações, utilizando, crossover, mutação

e inversão e uma população de cromossomos.

36

2.2.6.2. Evolução e Terminologia

De acordo com Mitchell M. (1996), a evolução vem sendo usada para a

resolução de diversos problemas e para a termologia na computação, pois a

natureza fornece a resolução de problemas complexos que buscam respostas

entre inúmeras soluções e condições ambientais diferentes. Em um

comparativo com a biologia, as várias alternativas são seqüências genéticas e a

solução, indivíduos adaptados. O processo de evolução traz soluções originais

para problemas complexos, e a utilidade de cada indivíduo dependerá de sua

adaptação.

Todos os seres vivos têm células que possuem cromossomos. Nos AGs estes

significam a possível resposta a um problema em forma de uma seqüência de

bits, podendo ser dividido em genes ou blocos com funcionalidades diferentes

no DNA, que codificam um elemento da possível solução. A variedade de

possíveis características são chamadas alelos, 0 ou 1.

2.2.6.3. Elementos Básicos de um Algoritmo Genético

O algoritmo genético tem como características principais, populações de

cromossomos, seleção pela utilidade, crossover reproduzindo novos indivíduos,

e mutação aleatória. A seqüência de bits caracteriza um cromossomo sendo

que cada localização do cromossomo possui dois possíveis alelos, 0 ou 1. O

AG processa em seqüência as populações de cromossomos, substituindo uma

população pela outra. Existe uma função que dá a cada cromossomo um valor.

A utilidade de um cromossomo depende de como ele consegue resolver o

problema, sendo a melhor solução aquela que apresentar maior utilidade. Estes

elementos serão discutidos em maior detalhe nos próximos itens.

37

Codificação – é preciso delimitar os parâmetros do problema em símbolos ou

genes, cujo comprimento pode ser constante ou dinâmico, codificando uma das

soluções possíveis dentro de um espaço de soluções. Esses símbolos, que

podem ser números binários, formam uma seqüência de bits, ou letras e

valores. Os Ags, geralmente, são binários e constantes, seus parâmetros estão

no mesmo espaço de valores, e em genes de mesmo tamanho.

 Funções de Utilidade –Os AGs são aplicados para otimizar funções, onde o

objetivo é encontrar um conjunto de parâmetros que maximize, por exemplo,

uma determinada função multivariada complexa. são utilizados também em

casos não-numéricos, em aminoácidos para buscar a melhor estrutura de uma

proteína dentre uma população de soluções. Em suma, um algoritmo genético

busca seqüências adaptadas, de acordo com sua função utilidade.

Operadores – existem três tipos principais de operadores no algoritmo

genético, seleção, crossover e mutação. A seleção elege indivíduos de uma

população para se reproduzirem, o mais adaptado dentre o espaço de soluções

possíveis será selecionado. O operador de crossover escolhe um local no

código genético e troca as seqüências, misturando dois pais e criando um

descendente, e trocando bits de uma seqüência em um cromossomo

aleatoriamente, a mutação, ocorre de acordo com uma pequena probabilidade,

por exemplo, 0,01%.

2.2.6.4. Estrutura de um Algoritmo Genético Básico

Ao definir um problema com uma seqüência de bits representando as soluções

possíveis, um algoritmo genético básico funcionaria da seguinte maneira:

1 – Gerar uma população aleatória com cromossomos de tamanho n;

38

2 – Nesta população para cada cromossomo x, calcular a função de utilidade

f(x);

3 – para criar n descendentes repetir as seguintes etapas:

- Na população atual, escolher os cromossomos pais de melhor utilidade.

- Em um ponto aleatório, cruzar a seqüência de bits dos pais, criando

descendentes, dada uma probabilidade PC ou taxa de crossover. Caso não

ocorra crossover, os descendentes serão idênticos aos pais.

- Em alguns casos, os AGs usam uma taxa igual ao numero de pontos onde

acontece cruzamento assim há possibilidade de crossover em pontos múltiplos,

não em apenas um ponto.

- Com os dois descendentes fazer mutações com probabilidade PM

(probabilidade de mutação) em cada ponto das seqüências geradas.

- Colocar esses descendentes criados na nova população.

4 - Adotar essa nova população no lugar da antiga.

5 - Repetir a segunda etapa.

Cada iteração representa uma geração, sendo que ao termino da rodada,

encontram-se indivíduos com maior utilidade, adaptados nesta população.

Levando-se em conta que a grande aleatoriedade criara comportamentos

diferenciados na população, para a resolução do mesmo problema, é usual,

colher resultados estatísticos de muitas rodadas diferentes. Além desse

procedimento existem detalhes como o tamanho da população e a escolha das

taxas de crossover e mutação. Escolher corretamente esses parâmetros levará

a um maior sucesso do algoritmo na resolução do problema.

2.2.6.5. Algoritmos Genéticos vs. Métodos de Busca
Tradicionais

Na ciência da computação o termo busca tem diferentes significados, usamos

esse termo até agora para descrever o que os AGs fazem, porém existem três

sentidos para a palavra busca. Na Busca de Caminhos o problema é definir as

39

ações que a partir de um estado inicial levam eficientemente ao objetivo, já na

Busca por Dados, o problema é achar informações que estão na memória.

Finalmente há a Busca de soluções que visa encontrar dentre soluções

possíveis a melhor solução. Neste tipo de busca é que será utilizado o algoritmo

genético.

Existem outros métodos que também solucionam problemas do tipo “Busca de

Soluções”, como simulated annealing, busca tabu e hill climbing. De um modo

geral, as técnicas de “Busca de soluções” funcionam do seguinte modo: (1)

geração de soluções candidatas; (2) avaliação destas por sua utilidade; (3)

escolha das melhores; (4) usando um operador, novas variantes são produzidas

sobre o conjunto restante.

A técnica de algoritmo genético difere das outras, pois combina elementos

como busca maciçamente paralela, seleção com mutação e crossover. Esses

elementos podem aparecer em outras técnicas isoladamente mais não nesta

combinação completa, por isso parece ser um método bastante adequado para

se resolver o problema de roteirização do Grupo varejista proposto neste

trabalho.

2.3. COMPUTAÇÃO PARALELA

A computação paralela é uma técnica utilizada para proporcionar alta

capacidade de processamento e desempenho computacional através do uso de

múltiplos processadores trabalhando na mesma tarefa. Existem diversos níveis

de paralelização, cada um deles correspondendo a uma infra-estrutura de

hardware própria com características de desempenho e custos específicos.

Além disso, o software utilizado na computação paralela deve ser adaptado

para levar em conta a distribuição de tarefas entre os vários processadores.

Nesta seção, discutiremos alguns dos principais aspectos desta abordagem

40

bem como o seu potencial para ser utilizada na solução do problema tratado.

2.3.1. Introdução e Conceitos Básicos

Em 1946, surgiu o primeiro computador digital eletrônico, que estabeleceu os

conceitos básicos da computação. Em seguido o modelo de Von Neumann

formado por processador, memória e dispositivos de E/S que executa

seqüencialmente cada ordem dada pela unidade de controle. A partir daí, novas

tecnologias foram criadas, como a computação paralela e as redes de

computadores. O processamento paralelo faz a divisão de uma aplicação para

vários elementos através de comunicação e sincronismo o que aumenta o

desempenho do sistema. A computação paralela possui alguns conceitos

básicos cuja compreensão nos ajudará no decorrer deste trabalho, os quais

serão descritos a seguir.

Paralelismo e Concorrência – ocorre concorrência quando dois ou mais

processos têm inicio no mesmo instante e não concluem suas atividades, o que

pode acontecer tanto em um sistema com um processador quanto com

múltiplos. Se um processo ocorre em paralelo, ele estará usando mais de um

processador no mesmo intervalo de tempo. Dentro da computação existem três

estilos de programação, a seqüencial que realiza uma tarefa depois da outra, a

concorrente que inicia várias tarefas mesmo que a anterior não tenha acabado,

e a paralela que inicia e executa as tarefas ao mesmo tempo.

Granulação – Para definir o tipo de plataforma, porte e quantidades de

processadores onde se aplicará o paralelismo é necessário saber o tamanho

das unidades de trabalho submetidas aos processadores, ou seja, o nível de

granulação, que pode ser fina, media e grossa. A Granulação Fina usa o

paralelismo para operações com processadores pequenos e simples, em

grande quantidade. A Granulação Média situa-se entre a fina e a grossa. Já a

41

Granulação Grossa utiliza o paralelismo em processos e programas, com

processadores grandes e complexos em pequena quantidade.

Speedup e Eficiência - Através do paralelismo, o processamento ganha

velocidade, sendo assim, para verificar a qualidade dos algoritmos paralelos há

duas medidas importantes, speedup e eficiência. O speedup é o aumento de

velocidade ocorrida comparando-se a velocidade de p processadores com a de

um na resolução do mesmo problema. O uso de uma granulação inadequada,

ou partes do código sendo seqüenciais, causam uma sobrecarga na

comunicação entre processadores e conseqüentemente uma diminuição no

valor de speedup ideal, que deveria tender a p. A eficiência é a medida que

trata dessa relação entre o speedup e o número de processadores. Quanto

mais processadores são utilizados em paralelo, menor será a eficiência de

processamento. No caso ideal (speedup = p), a eficiência seria máxima e teria

valor 1 (100%).

2.3.2. Níveis de Paralelização

A paralelização pode ocorrer basicamente em três níveis distintos:

- Estação com múltiplos processadores: um computador conta com vários

processadores integrados na sua arquitetura, com compartilhamento de

memória e barramento único. É a forma mais cara de computação paralela,

porém, tem operação fácil e melhor desempenho em tarefas seqüenciais.

- Cluster: sistema com dois ou mais computadores, cujo objetivo é fazer com

que todo o processamento da aplicação e realização de tarefas seja distribuído

aos computadores, de tal forma que ao usuário, pareça um único sistema

respondendo. Pode ser montado com qualquer tipo de computador, conectados

através de uma rede, o que permite que sejam montados a custos mais baixos,

42

além de ter escalabilidade, e alto controle de desempenho.

- Processamento Distribuído: permite maior paralelização, pois os

computadores não precisam estar conectados o tempo todo e nem controlados

de forma centralizada. O problema é quebrado em inúmeros sub-problemas que

são enviados para computadores independentes, processados e finalmente

devolvidos para o ponto de origem que irá consolidá-los. Esta paralelização é a

mais barata, não requer investimento em hardware e não tem limite de

processadores para se trabalhar. No entanto, há demora na obtenção de

resultados, e impossibilidade de comunicação e controle dos processos.

Para os fins deste trabalho, os clusters se mostram como a opção mais prática

por apresentarem custos mais reduzidos do que os supercomputadores e

permitirem um alto grau de controle sobre os processos. A seguir iremos

detalhar melhor o funcionamento e os tipos existentes de clusters.

2.3.3. Clusters

O uso de clusters eleva a confiança, distribuição de carga e capacidade de

processamento. Cada computador de um cluster é denominado nó. Todos os

nós formam uma rede, permitindo acréscimo ou retirada de um nó, sem

interromper o funcionamento. O sistema operacional usado nos computadores

deve ser de um mesmo tipo, ou seja, ou somente Windows, ou Linux, ou BSD,

etc. Isso porque existem particularidades em cada sistema operacional.

Clusters são usados quando os conteúdos são críticos ou quando os serviços

têm que estar disponíveis o mais rápido possível. Os pesquisadores,

organizações e empresas estão utilizando os clusters porque precisam

incrementar sua escalabilidade, gerenciamento de recursos, disponibilidade ou

processamento num nível super-computacional e a um custo razoável.

43

Tipos de Clusters

Segundo Pitanga, M (2004), podemos classificar os clusters em alguns tipos

básicos que veremos a seguir.

• Cluster Beowulf:

Estes clusters são usados para computação cientifica ou análises financeiras,

tarefas típicas, que exigem alto poder de processamento. O Beowulf foi

fundamentado em 1994, pela NASA, para processar as informações espaciais.

Desde então, empresas (como HP e IBM) e universidades (como a brasileira

Unesp e USP) vêm construindo clusters deste tipo, com cada vez mais nós.

 O Beowulf tem um sistema dividido em um nó controlador denominado front-

end (ou nó mestre), cuja função é controlar o cluster, monitorando e distribuindo

as tarefas, atua como servidor de arquivos e executa o elo entre os usuários e o

cluster. Os demais nós são os clientes, backends, ou nós escravos, e

processam as tarefas enviadas pelo nó mestre. Nestes nós não existe a

necessidade de teclados e monitores, e eventualmente até de discos rígidos

(boot remoto), alem de poderem ser acessados via login remoto (telnet ou ssh).

Figura 2.7 - Esquema simples de um Cluster Beowulf (elaborado pelo autor)

44

Este Cluster permite a construção de sistemas de processamento que podem

alcançar altos valores de gigaflops (um gigaflops equivale a 1 bilhão de

instruções de ponto flutuante executadas por segundo). Isso com o uso de

computadores comuns e de um sistema operacional com código-fonte livre,

além de equipamentos comuns às redes.

• Cluster para Alta Disponibilidade (High Availability - HA) – Para que o

sistema não desative este modelo de cluster possui proteção e detecção

de falhas, replicando serviços e servidores, através da redundância de

hardware e reconfiguração de software em diferentes nós. Caso haja

falha em um nó, aplicações e serviços estarão disponíveis em outro.

• Cluster para Balanceamento de Carga (Load Balancing) – este cluster

integra seus nós para que todas as requisições sejam distribuídas entre

eles. Todos os nós são responsáveis por controlar os pedidos. Se um nó

falhar, as requisições são redistribuídas entre os nós disponíveis no

momento, baseados em um escalonador e um algoritmo próprio.

• Cluster Combinado, HA & Load Balancing – É a união das características

dos clusters de Alta Disponibilidade e de Balanceamento, aumentando

assim a disponibilidade e escalabilidade de serviços e recursos, evitando

paradas criticas. Suas características são o redirecionamento dos

pedidos dos nós que falham para os nós reservas, melhoria na qualidade

serviço e disponibilização de uma arquitetura escalonável.

2.3.4. Biblioteca de Paralelização MPI

As bibliotecas de paralelização são a alma do desenvolvimento dos aplicativos

para os clusters, pois são elas que possibilitam que um mesmo aplicativo utilize

45

os recursos computacionais de mais de uma máquina ao mesmo tempo,

através dos protocolos de comunicação. O cerne das aplicações paralelas é a

utilização de mais de um processador para rodar a mesma aplicação, sendo

que para se obter isso, é necessário que esses processadores se comuniquem,

o que ocorre basicamente de duas formas: através de memória compartilhada

ou da troca de mensagens.

A memória compartilhada é utilizada quando há mais de um processador em

uma máquina. Para os usuários de máquinas pessoais e a maioria das

empresas, não é comum existirem computadores com mais de dois

processadores, devido ao seu alto custo. Dessa forma, esse tipo de paralelismo

não é tão comum aos usuários. A memória distribuída é utilizada quando há

mais de uma máquina trabalhando em conjunto, ou seja, cada máquina é

independente, com processador e memória própria como no caso dos clusters.

Por isso, é necessário que troquem informações entre si, o que é feito via rede.

As bibliotecas de paralelizações possuem um conjunto de instruções que

permite que um computador se comunique com o outro, sendo os processos

distribuídos e sincronizados. O MPI (Message Passing Interface) é uma das

bibliotecas mais utilizadas hoje na programação paralela, e será adotada na

construção dos algoritmos neste trabalho. Maiores detalhes sobre os tipos de

biblioteca de paralelização e especificamente o MPI se encontram no Anexo A.

2.4. ALGORITIMO GENÉTICO PARALELO

Como o problema de roteamento de veículos com restrições operacionais é um

problema de difícil solução, podemos utilizar as técnicas de computação

paralela para aumentar a capacidade de processamento e assim chegar a

soluções de melhor qualidade. Os algoritmos genéticos têm se mostrado

bastante adequados para execução em máquinas paralelas devido ao alto grau

46

de paralelização intrínseco a sua estrutura. Existem dois tipos de algoritmos

genéticos (AGs) paralelos que podem explorar os ganhos de escala desta

abordagem de forma bastante eficiente: AGs mestre-escravo (ou global) e AGs

de múltiplas populações (também conhecidos como modelo de ilhas).

A característica básica de um AG paralelo é a divisão da tarefa de avaliação

das populações para os diferentes processadores disponíveis. A tarefa a ser

paralelizada pode ser tanto a avaliação da função utilidade de cada indivíduo de

uma população única, como a avaliação de uma sub-população inteira alocada

a cada nó. Em ambos os casos existem alguns fatores importantes a serem

avaliados para o bom desempenho do algoritmo.

Um fator crítico para qualquer AG é a troca de material genético de qualidade

entre as soluções. Essa troca é influenciada tanto pela taxa de crossover

quanto pela seleção de soluções que irão se reproduzir. Se a seleção for muito

intensa a população irá convergir muito rápido e não haverá tempo suficiente

para ocorrer uma mistura adequada entre os membros da população. Quando

isso ocorre, o AG pode convergir para uma população sub-ótima. Por outro

lado, se a seleção for muito baixa, o crossover pode destruir qualquer boa

solução que tenha surgido e não tenha tido tempo de se reproduzir. Nesse caso

o AG provavelmente não encontrará uma boa solução.

Além de decidir sobre os valores adequados para os parâmetros básicos do

AG, na versão paralela é necessário escolher as taxas de migração, tamanho

das sub-populações, topologia de conexões entre sub-populações e freqüência

ou agendamento de migrações.

2.4.1. AGs Paralelos Mestre-Escravo

O mestre escravo é o tipo mais simples de AG paralelo. Essencialmente ele é

47

igual a um AG seqüencial que distribui o cálculo da função objetivo ou avaliação

da utilidade para os nós disponíveis. O mestre armazena toda a população e

cada nó escravo avalia uma fração dos indivíduos.

Figura 2.8 - Topologia básica de um AG Mestre-Escravo (adaptado de Cantú-Paz,
1999)

Segundo Cantú-Paz, os AGs mestre-escravo foram propostos por Grefenstette

(1981), mas não tem sido largamente utilizados. No entanto, existem algumas

aplicações bem sucedidas, como no caso de Fogarty e Huang (1991) onde os

AGs são utilizados para evoluir regras para uma aplicação de balanceamento.

As operações de crossover e mutação podem ser paralelizadas. No entanto

essas operações são tão simples que os ganhos obtidos com a paralelização

podem ser perdidos com o aumento do tráfego de rede. O mesmo ocorre

quando paralelizamos o processo de seleção de indivíduos.

Finalmente podemos dizer que o AG paralelo mestre-escravo ou global é um

método de fácil implementação e pode ser um método eficiente quando requer

cálculos demorados. Além disso, o método não altera a estratégia de busca e,

portanto, podemos aplicar toda a teoria existentes para os AGs simples.

2.4.2. AGs Paralelos de Múltiplas Populações

O segundo tipo de AG que pode ser utilizado para aproveitar os ganhos da

computação paralela é o de múltiplas populações. Eles também são chamados

48

de modelo de ilhas, e consistem de algumas sub-populações que

freqüentemente trocam indivíduos segundo, Cantú-Paz (1999). Este é

provavelmente o tipo mais popular de AG paralelo, mas ele é controlado por

muitos parâmetros e a compreensão de como cada um deles afeta o

desempenho do algoritmo em uma dada instância é muito trabalhosa.

Um dos aspectos mais importantes é o papel da troca de indivíduos entre as

sub-populações. Esta troca é chamada de migração e é controlada por três

parâmetros: (1) a taxa de migração, numero de indivíduos que vão migrar, (2)

uma agenda de migração, que determina quando as migrações irão ocorrer, e

(3) a tipologia de comunicação entre as sub-populações.

Figura 2.9 - Esquema de um AG paralelo de múltiplas populações. As sub-populações
trocam indivíduos com seus vizinhos neste esquema (adaptado de Cantú-Paz, 1999)

As migrações afetam a qualidade da busca e a eficiência do algoritmo. Por

exemplo, migrações freqüentes resultam em uma massiva troca de material

genético, potencialmente útil, mas afetam negativamente o desempenho devido

ao custo de comunicação. O mesmo ocorre com tipologias densamente

conectadas, onde cada sub-população se comunica com muitas outras.

O objetivo final dos AGs paralelos é achar soluções rapidamente, sendo

necessário, portanto, achar um balanço entre o custo de usar migração e o

aumento das chances de se achar boas soluções.

Sub-populações

49

3. MODELAGEM DO PROBLEMA

No capítulo 1 apresentamos a empresa e seus processos e descrevemos o

problema que estamos nos propondo a resolver. No segundo capítulo foi feita

uma ampla revisão da bibliografia sobre o tema, o que tornou possível a

escolha de alguns métodos de solução que se mostraram mais apropriados ao

problema, bem como a sua formulação.

Passaremos agora a combinar o conteúdo destes dois capítulos para construir

um modelo capaz de proporcionar uma representação fiel das operações do

grupo e ao mesmo tempo permitir que este possa ser resolvido para que sejam

obtidas melhores soluções para o problema de abastecimento do que as

utilizadas atualmente pela empresa.

Como foi visto no Item 1, o processo de abastecimento é composto

basicamente por 3 etapas principais – recebimento dos pedidos, roteirização e

transporte para as lojas. O foco deste trabalho, como já foi dito anteriormente,

esta justamente na segunda etapa, a de roteirização. No entanto, para que esta

possa ser resolvida a contento, são necessárias informações provenientes das

duas etapas adjacentes. Na prática existe uma interação dinâmica entre as

informações necessárias e disponíveis sobre um determinado processo e a

forma como este pode ser modelado para sua resolução. Neste capítulo

estaremos detalhando como o modelo foi concebido e no próximo será

explicado como os dados necessários foram levantados e adaptados ao

mesmo.

50

Figura 3.1 - Processo de abastecimento simplificado (elaborado pelo autor)

3.1. CLASSIFICAÇÃO DO PROBLEMA

O primeiro passo na construção do modelo é avaliar seus principais

componentes e decidir como cada um deles será abordado. No Item 2.1.3

estudamos as possíveis variações dos problemas de roteirização de veículos

segundo uma série de aspectos. De acordo com a classificação proposta por

Assad (1998) podemos formular o problema da seguinte maneira:

Demanda

• O atendimento da demanda deve ser total, ou seja, nenhum dos clientes

pode deixar de ser atendido e todo o volume solicitado deve ser entregue

para cada um deles;

• Os produtos que compões os pedidos serão tratados como sendo iguais,

considerando-se apenas o volume que ocupam e não o tipo de

mercadoria;

• Não haverá prioridade de clientes de tal forma que o atendimento de

todos eles seja igualmente importante;

• Serão consideradas apenas entregas, não havendo coletas ou backhaul;

• A demanda é previamente conhecida e não aleatória;

51

• Todas as entregas serão consideradas únicas e não periódicas de modo

que a cada dia os pedidos devem ser formulados novamente.

Frota de Veículos

• A frota utilizada é heterogenia. Serão considerados no modelo os 3 tipos

de veículos mais utilizados na prática, com custos e características

diferentes;

o Carreta – com capacidade de 28 paletes;

o Truck – com capacidade de 14 paletes;

o Leve – com capacidade de 7 paletes

• Os veículos possuem restrição de capacidade e todos eles devem partir

do CD e retornar para o mesmo no final de cada roteiro;

• Não há restrições de carregamento dos veículos no CD, nem

incompatibilidade entre veículos e carga (uma vez que não estamos

considerando cargas líquidas ou refrigeradas no escopo deste trabalho);

• Há um número variável (ilimitado) de veículos que podem ser utilizados;

• Alguns veículos não podem visitar todas as lojas devido a restrições

operacionais como altura das docas, falta de espaço para manobra e

restrições de tráfego urbano.

 Pessoal

• Será considerada uma jornada de trabalho máxima de 10 horas havendo

a possibilidade desta ser ultrapassada apenas nos casos onde seja

impossível atender uma determinada loja no tempo disponível;

• O número de motoristas será considerado ilimitado;

• O horário de início da jornada será flexível, de acordo com a

necessidade de cada roteiro;

• Não haverá tempo extra de descanso entre as viagens (este será

considerado no tempo de descarga que é superestimado).

52

Programação

• Serão consideradas janelas de recebimento rígidas para as entregas, ou

seja, se o caminhão chegar antes do início da janela deverá aguardá-la e

se chegar depois não poderá efetuar a entrega;

• O tempo de descarga será fixo em 1,5h;

• O centro de distribuição trabalha 24h por dia.

Informações

• Não estarão sendo utilizados dados geográficos e de redes viárias;

• As lojas serão localizadas de acordo com suas coordenadas de latitude e

longitude (quando estas não estiverem disponíveis será utilizado o

centróide da cidade onde as mesmas se situam);

• Os tempos de viajem serão calculados a partir da distância entre os

pontos de origem e destino e da velocidade média dos caminhões

naquele trecho (função da distância);

Os detalhes de como todas estas informações foram obtidas e processadas

encontram-se no Capítulo 4.

3.2. PRINCIPAIS PARTICULARIDADES DO MODELO

Além das características discutidas na seção anterior, o modelo proposto neste

trabalho apresenta duas diferenças importantes quando comparado aos

modelos encontrados na bibliografia, que serão discutidas a seguir.

A primeira delas é a forma como o custo de transporte é considerado. Na

grande maioria dos casos estudados, este custo é diretamente proporcional à

distância percorrida pelos veículos durante o processo de entrega. No entanto,

como no Grupo o abastecimento é feito por transportadoras terceirizadas, o

custo irá depender dos contratos e não das distâncias. Basicamente, cada loja

53

está situada numa região para a qual existe um preço fixo de atendimento

dependendo do modelo de veículo utilizado. Este preço independe do peso ou

volume transportado e da distância ou tempo do percurso. A forma como esta

característica particular foi incorporada aos métodos de solução será discutida

em mais detalhes nos próximos capítulos.

Outra diferença significativa entre o modelo proposto e os encontrados na

literatura é a possibilidade de que uma loja seja atendida por mais de um

roteiro. Esta flexibilização do modelo se mostrou necessária uma vez que os

volumes transportados para as lojas do Grupo são frequentemente superiores à

capacidade dos caminhões.

Os modelos de roteirização tradicionais assumem que a demanda de cada

ponto de entrega é menor do que a capacidade dos veículos. Caso

eventualmente esta demanda seja superior, o problema é resolvido com o envio

de caminhões totalmente ocupados exclusivamente para aquela loja até que a

demanda remanescente seja inferior à capacidade dos caminhões.

Figura 3.2 - (a) Apenas um roteiro pode passar por cada loja; (b) Possibilidade de dois
roteiros passarem pela mesma loja (elaborado pelo autor)

A possibilidade de mais roteiros passando pela mesma loja amplia

significativamente o número de soluções viáveis no espaço de soluções e torna

mais trabalhosa a otimização dos roteiros. No entanto, esta flexibilidade

54

adicional permite que soluções mais vantajosas sejam testadas já que a

capacidade ociosa dos caminhões em diferentes roteiros pode ser utilizada para

atender a demanda de uma loja sem que haja a necessidade do envio de um

veículo a mais para a mesma.

Mesmo assim, como serão testados diferentes métodos de solução para este

modelo, em alguns casos tivemos que trabalhar com a restrição original devido

à forma como o método trabalha.

No caso da heurística construtiva de Clarke and Wright, a proibição de múltiplas

visitas a uma mesma loja foi utilizada tal como a literatura sugere, devido

dificuldade de se adaptar o algoritmo para ignorar esta restrição, sem que sua

qualidade seja prejudicada. Já para o Meta RaPS foi possível trabalhar com

uma certa flexibilização desta restrição. Apesar de não permitir que múltiplos

roteiros abasteçam uma mesma loja, o que pode ser implementado foi uma

variação dos veículos que fazem a entrega exclusiva antes que a carga

remanescente seja roteirizada. Desta forma, pudemos obter diferentes

combinações de demanda que são atendidas na segunda fase do algoritmo

obedecendo à regra de construção da heurística.

Finalmente, nos Algoritmos Genéticos, tanto na versão seqüencial quanto na

paralela, a possibilidade de mais de um roteiro atender a mesma loja pode ser

implementada graças a grande flexibilidade que este método proporciona na

modelagem e tratamento de restrições.

No próximo capítulo estaremos descrevendo como as informações necessárias

a resolução deste modelo foram obtidas e adaptadas.

55

4. LEVANTAMENTO DE DADOS

Uma etapa crítica na solução de qualquer problema consiste na obtenção e

tratamento dos dados necessários à sua formulação. Na prática, a solução

obtida por um modelo nunca será melhor do que a qualidade dos dados de

entrada.

Neste capítulo iremos discutir os principais dados necessários à solução do

problema de roteamento dos veículos que fazem o abastecimento das lojas da

empresa, como os mesmos foram obtidos, tratados e inseridos nos modelos.

4.1. DISTÂNCIAS

Para se representar de maneira precisa a rede de lojas, de modo que

possamos avaliar as distâncias percorridas nas rotas propostas, bem como o

tempo necessário para percorrê-las, é necessário conhecer a localização de

cada ponto.

As coordenadas de cada uma das lojas e do centro de distribuição em questão

(latitude e longitude) foram obtidas a partir dos seus respectivos endereços com

o auxílio de um site de localização (www.apontador.com.br). Para algumas lojas

cujos endereços o software não conseguia encontrar, as coordenadas foram

determinadas a partir do centróide da cidade. Estes dados já estavam

disponíveis em uma planilha de cadastro das lojas e centros de distribuição,

que além destas informações, contém o nome da loja, telefone, endereço

completo, CNPJ, entre outras.

56

Figura 4.1 - Localização das lojas e CD do Grupo (elaborado pelo autor)

A Figura 4.1 apresenta a latitude e longitude levantada para cada uma das lojas

incluídas no escopo do trabalho. Como podemos perceber, existe um grupo de

lojas mais afastado que foi mantido no problema por ser atendido pelo CD em

questão e estar localizado dentro do estado de São Paulo. Por estas lojas

apresentarem uma distância mais elevada, o tempo de viagem também cresce

bastante. Em alguns casos na prática este tempo ultrapassa a jornada de

trabalho do motorista, o que não deveria ser permitido. Para lidar com este fato

no modelo, em cada um dos métodos de solução propostos, serão feitas

adaptações para permitir que as restrições de tempo máximo possam ser

violadas caso seja impossível atender uma determinada loja neste intervalo,

viabilizando a solução do problema.

De posse das coordenadas podemos calcular a distância entre todos os pares

de pontos que compõem a rede. Caso estas coordenadas fossem a posição (x,

y) dos pontos sobre um plano poderíamos obter as distâncias calculando

apenas o comprimento da reta que os une como sendo:

() ()22
jijiij yyxxd −+−=

-51

-50

-49

-48

-47

-46

-45

-44

-24,5 -24 -23,5 -23 -22,5 -22 -21,5 -21

Latitude

Lo
ng

itu
de

Lojas
CD

57

No entanto, como as coordenadas estão em latitude e longitude, devemos

determinar o comprimento do arco que une os dois pontos sobre a superfície da

Terra. Este comprimento pode ser obtido através da seguinte equação:

Onde:

• 6377 é o raio da Terra em quilômetros;

• lat é a latitude de um ponto expressa em radianos;

• lon é a longitude de um ponto expressa em radianos;

• sen é a função seno;

• cos é a função cosseno;

• acos é a função arco cosseno;

• abs é o valor absoluto de um número;

Uma vez determinadas as distâncias dos arcos que unem os pontos da rede

dois-a-dois, temos uma boa aproximação da distância real a ser percorrida para

ir de um destes pontos ao outro. No entanto esta distância real, na prática, irá

depender das vias terrestres disponíveis entre os pontos.

Para corrigir esta distorção entre o valor teórico e o valor prático das distâncias

foi feita uma análise com base nos dados históricos de distância percorrida e do

resultado da equação anterior. As diferenças obtidas podem ser vistas no

gráfico da Figura 4.2.

() () () () ()()()ijjijiij lonlonabslatlatlatsenlatsenad −⋅⋅+⋅⋅= coscoscoscos6377

58

Figura 4.2 - Correlação entre o fator de correção e a distância (elaborado pelo autor)

Como podemos observar, para distâncias pequenas, a razão entre as duas

distâncias apresenta uma variabilidade muito grande de acordo com o trajeto

percorrido. Já para distâncias maiores este fator tende a um valor médio e sua

variabilidade diminui. Com o intuito de representar este comportamento de uma

maneira que tornasse mais realistas as distâncias efetivas que usaremos nos

modelos de solução tentamos ajustar diversos tipos de curva que

representassem esta distribuição. A curva que pode ser vista no gráfico foi a

que melhor se ajustou aos pontos, mas mesmo assim de maneira muito pobre,

apresentando um r2 apenas 0,08. Desta formas optamos por utilizar um fator de

correção fixo de 1,27 que representa o valor médio dos números analisados.

A maneira mais acurada de se fazer uma estimativa das distâncias seria utilizar

os dados históricos de distância percorrida para cada combinação de pontos.

No entanto, estes dados só existem para uma fração ínfima dos 23.005 (215

combinados dois a dois) arcos necessários para representar a rede. Outra

maneira seria obter esta distância por meio de um software de cálculo da

distância mínima entre dois pontos que utiliza um banco de dados de

y = 1,6097x-0,0385

R2 = 0,0812

0

0,5

1

1,5

2

2,5

3

3,5

0 500 1000 1500 2000 2500 3000 3500
Distância (Km)

Fa
to

r d
e

C
or

re
çã

o

59

informações geográficas incluindo mapas viários detalhados. Como não havia

uma ferramenta deste tipo disponível e o número de arcos a serem calculados

era muito grande optamos pelo uso do fator de correção mencionado.

Figura 4.3 - Gráfico de distribuição dos fatores de correção (elaborado pelo autor)

4.2. VELOCIDADE DOS VEÍCULOS

De posse das distâncias de cada um dos trechos que poderão compor uma rota

de entrega, devemos calcular o tempo que os respectivos trechos levarão para

serem percorridos. Para tanto é necessário saber a velocidade média

desenvolvida por um veículo ao percorrer um determinado trecho.

Com o intuito de se determinar esta velocidade, novamente fizemos uma

análise dos dados históricos do grupo. Desta vez comparamos a distância real

percorrida entre dois pontos e o tempo total de percurso (sem incluir as paradas

para carga e descarga do veículo). Os resultados obtidos podem ser vistos na

Figura 4.4 que conta com 1.000 observações.

Histograma

0

50

100

150

200

250

1

1,
1

1,
2

1,
3

1,
4

1,
5

1,
6

1,
7

1,
8

1,
9 2

2,
1

2,
2

2,
3

2,
4

2,
5

2,
6

2,
7

2,
8

2,
9 3

M
ai

s

Fator de correção

Fr
eq

üê
nc

ia

60

Figura 4.4 - Gráfico velocidade média desenvolvida de acordo com a distância do
trecho (elaborado pelo autor)

Ao contrário do caso em que analisamos o comportamento da distância teórica

e real, agora é nítida a existência de uma correlação. À medida que as viagens

se tornam mais longas, a velocidade média tende a aumentar. Isto se deve ao

fato de que, para se percorrer grandes distâncias utilizam-se, na maioria das

vezes, estradas nas quais a velocidade desenvolvida é maior. Já nos trechos

curtos, é comum o tráfego em vias urbanas onde há maiores

congestionamentos e semáforos que reduzem a velocidade média.

Para representar este fato no modelo de solução tentamos ajustar algumas

curvas que representassem bem este conjunto de pontos. Uma curva

logarítmica parece se adequar bem aos dados analisados, mas ela tem o

problema de tender a zero quando a distância é pequena. Assim, optamos por

uma equação do terceiro grau que apresenta um r2 de 0,766 e representa muito

bem os pontos no intervalo que utilizaremos na prática. Para evitar que a

y = 7E-07x3 - 0,0008x2 + 0,3096x + 16,952
R2 = 0,7656

0

10

20

30

40

50

60

70

80

0 100 200 300 400

Distância (Km)

Ve
lo

ci
da

de
 m

éd
ia

 (K
m

/h
)

61

velocidade se torne muito alta para grandes distâncias já que o termo ao cubo é

positivo, fixamos um limite em 60km/h que na prática é bastante razoável.

Desta forma, a velocidade é dada pela equação abaixo:

4.3. FROTA DE VEÍCULOS

O próximo passo no levantamento dos dados necessários a resolução do

problema é conhecer a frota de veículos disponíveis para realizar as entregas,

assim como sua estrutura de custos.

O Grupo não possui nenhum veículo próprio para realizar o abastecimento de

suas lojas. Todas as entregas são feitas através de empresas terceirizadas que

disponibilizam caminhões dedicados ao atendimento das necessidades da

operação. No total, são mais de 40 transportadoras que prestam serviços para

a empresa, o que garante uma ampla variedade de veículos e disponibilidade.

Cerca de 500 veículos compõe a frota dedicada, mas este número pode ser

adaptado de acordo com as necessidades. A Tabela 4.1 lista os modelos de

veículos utilizados nas operações da empresa:

Modelos disponíveis
Carreta mono eixo com baú e plataforma Toco frigorífico com plataforma
Carreta com baú sem plataforma Toco frigorífico sem plataforma
Leve baú com plataforma Truck baú com plataforma longo
Leve baú sem plataforma Truck baú com plataforma
Leve frigorífico sem plataforma Truck baú sem plataforma
Toco baú com plataforma Truck frigorífico sem plataforma
Toco baú sem plataforma Truck isotérmico com plataforma

Tabela 4.1 - Lista de veículos utilizados nas operações (elaborado pelo autor)

()60,952,163096,00008,00000007,0min 23 +⋅+⋅−⋅= dddV

62

Apesar desta grande variedade de veículos disponíveis, na pratica, apenas

alguns deles são utilizados nas operações de abastecimento de carga

paletizada com a qual estaremos lidando ao longo deste trabalho. Os modelos

mais importantes neste processo são as carretas, trucks e veículos leves, que

são utilizados no transporte de produtos de mercearia, principal categoria

considerada no escopo deste trabalho. Maiores detalhes destes veículos

encontram-se na tabela a seguir:

Medidas Internas / Externas (m)
Veículo Capacidade

(Kg)
Qtd.

Paletes
Cubagem

(m3) Comprimento Largura Altura
Leve 9.000 7 19,7 4,79 / 5,00 2,06 / 2,20 2,00 / 2,24
Truck 22.000 14 41,2 7,29 / 7,50 2,46 / 2,60 2,30 / 2,56
Carreta 44.000 28 85,0 14,40 / 14,60 2,46 / 2,60 2,40 / 2,66
Tabela 4.2 - Detalhes dos veículos (elaborado pelo autor)

Tendo sido definidos os centros de distribuição, as lojas e os veículos que serão

utilizados nos modelos de solução, se faz necessário conhecer os custos

incorridos ao se fazer uma viagem de um ponto a outro nesta rede com um

determinado veículo. Neste sentido dois pontos importantes devem ser

esclarecidos.

Em primeiro lugar, como a frota é terceirizada, os custos com os quais

estaremos trabalhando não são os custos reais da operação (combustível,

depreciação dos veículos, salário dos motoristas, etc.), mas sim o valor

estabelecido em contrato com as transportadoras.

O segundo ponto importante é que este preço pago por viagem não depende

diretamente da distância total percorrida, tempo de percurso, ou mesmo do

peso ou volume transportado. Este valor esta definido como um preço fixo pago

por viagem de acordo com uma classificação de localidade onde se encontram

as lojas.

63

De acordo com este modelo de custeio, duas lojas localizadas na região de

Campinas, por exemplo, terão o mesmo custo de atendimento mesmo que uma

delas esteja mais longe ou necessite de um volume maior. É evidente que este

custo fixo é definido por tipo de veículo de tal forma que uma viagem de carreta

custará necessariamente mais do que uma realizada por um veículo leve para

uma mesma distância. Finalmente é importante notar que caso um veículo seja

designado para atender mais de uma loja na mesma viajem, o preço cobrado

será sobre a localidade mais cara, além de um adicional de R$16,00 por cada

loja extra visitada.

Concluindo, podemos dizer que os fatores determinantes do custo de frete são:

• Tipo do veículo – quanto maior a capacidade mais caro o frete;

• Região onde a loja se encontra – quanto mais distante a região mais

caro o frete, porém este é constante dentro de uma mesma região;

• Número de lojas no roteiro – custo extra de R$16,00 para cada loja além

da primeira em cada viagem (independentemente da região ou veículo);

• Combinação de lojas no roteiro – caso existam lojas de duas regiões

num mesmo itinerário o frete será cobrado pela mais cara.

Custo de Frete Região
Carreta Truck Leve

Americana / Sta. Barbara R$ 627,90 R$ 408,20 R$ 288,60
Araçatuba R$ 2.642,90 R$ 1.733,94 R$ 1.235,26
Araraquara R$ 1.362,40 R$ 889,20 R$ 630,50
Atibaia R$ 383,50 R$ 256,10 R$ 184,60
Bauru R$ 1.765,40 R$ 1.153,36 R$ 818,74
Botucatu R$ 1.257,10 R$ 817,18 R$ 579,02
Caçapava R$ 626,60 R$ 413,14 R$ 295,36
Campinas R$ 509,60 R$ 331,76 R$ 235,04
Campos do Jordão R$ 912,60 R$ 604,24 R$ 433,16

Tabela 4.3 - Exemplo de custos de frete por região e modelo de veículo (elaborado
pelo autor)

64

4.4. DEMANDA

As lojas da empresa, trabalham com uma ampla variedade de produtos. Dentre

as categorias mais importantes podemos citar frutas, legumes e verduras,

mercearia, carnes e outros produtos refrigerados, eletrodomésticos, etc. Como

já mencionamos na definição do problema, estaremos abordando neste

trabalho o abastecimento das lojas com cargas paletizadas, que podem ser

transportadas em caminhões comuns.

A demanda das lojas, é composta por diferentes categorias de carga paletizada,

quais sejam contentores, paletes, gaiolas, roltainers e carrinhos etc. Todas

estas categorias de carga podem ser tratadas de forma análoga, exceto pelos

carrinhos e gaiolas que ocupam metade de uma posição palete no veículo.

Assim, a demanda total de uma determinada loja é obtida pela consolidação de

toda a carga demandada, respeitando-se o volume que ela ocupa.

Para o propósito deste trabalho, escolhemos algumas datas com uma demanda

típica para serem utilizadas como problema a ser resolvido. A Tabela 4.4 a

seguir representa a consolidação da demanda de algumas lojas numa das

datas escolhidas. A demanda total neste dia foi de 2269 paletes, o que nos dá

uma idéia do tamanho do problema com o qual estamos lidando.

Demanda por tipo de carga Loja
VDE PLT AZU GLA PTO ROL CAR TOTAL

1 0 13 2 2 0 0 0 16
2 0 29 1 2 0 0 0 31
3 0 4 0 0 0 0 0 4
4 0 5 0 0 0 0 0 5
5 0 5 0 0 0 0 0 5
6 0 5 0 1 0 0 0 5,5
7 0 0 0 0 0 20 0 20
8 0 7 0 2 0 0 0 8
… … … … … … … … …

Tabela 4.4 - Consolidação das cargas no dia escolhido (elaborado pelo autor)

65

Carga Descrição
VDE Contentores Verdes
PLT Paletes PBR
AZU Paletes Azuis
GLA Gaiolas
PTO Contentores Pretos
ROL Rolltainers
CAR Carrinhos

Tabela 4.5 - Descrição dos tipo de carga (elaborado pelo autor)

4.5. JANELAS DE RECEBIMENTO

Uma das restrições operacionais que torna este um problema complexo é a

existência de janelas de recebimento muito diferentes entre as lojas. Esta janela

pode ser definida por dois horários, um inicial (hi) e um final (hf) entre os quais

as entregas podem ser efetuadas. Caso um veículo chegue em uma loja antes

de sua janela de recebimento, o mesmo deverá ficar aguardando até o

momento hi. Por outro lado, se ele chegar após hf a entrega não poderá ser

efetuada e a rota é considerada inviável.

A Tabela 4.6 mostra as janelas de recebimento para algumas das lojas da rede.

Repare que podem existir casos onde o horário final é menor do que o inicial.

Isto representa que a loja pode receber mercadorias durante a madrugada de

um dia para o outro. Para representar este fato no modelo, somamos 24 horas

no horário final do recebimento quando necessário, fazendo com que a janelas

ficassem com a duração correta. Os dados completos podem ser observados

no Anexo C.

66

Loja Distância
(Km)

Início do
Recebimento (hi)

Final do
Recebimento (hf)

1 23 12:00 15:00
2 13 18:00 20:00
3 17 11:00 15:00
4 16 06:00 08:00
5 17 19:00 21:30
6 22 13:00 18:00
7 88 08:00 14:00
8 21 19:00 22:00
9 114 06:00 22:00

10 155 06:00 07:00
11 19 20:00 22:00
… … … …
Tabela 4.6 - Janelas de recebimento (elaborado pelo autor)

O horário no qual um veículo parte do CD, que também consiste numa variável

de decisão, é determinado com base na janela de recebimento da primeira loja

da rota. Este horário será igual a hi desta loja menos o tempo de percurso do

trecho do CD até a mesma. Desta forma, o veículo chegará à loja no momento

mais cedo em que pode realizar a entrega.

O levantamento de dados foi fundamental para a resolução do problema. Este

processo nos permitiu conhecer melhor as operações da empresa e nos deu

subsídios para a construção dos modelos. No próximo capítulo, passaremos a

descrever em detalhes todos os modelos desenvolvidos neste trabalho e os

métodos utilizados em cada um deles.

67

5. RESOLUÇÃO DO MODELO

Após ter estudado os principais aspectos relacionados ao problema que nos

propomos a resolver, feito uma ampla revisão bibliográfica sobre os tipos de

problemas e os métodos de solução existente, e ter detalhado o modelo

desenvolvido e os dados levantados, passaremos agora a descrever como

estes foram utilizados no desenvolvimento dos métodos de solução. Este

capítulo está dividido em quatro partes de acordo com os métodos utilizados.

Na primeira parte trataremos do método básico utilizando heurística de Clarke &

Wright, e todas as modificações feitas para adaptá-lo às condições reais do

problema, principalmente quanto ao cálculo de economias, a frota heterogênea

e as lojas que não podem receber carretas. Na segunda parte falaremos do

modelo que utiliza a meta heurística conhecida como Meta-RaPS, que é uma

forma simples de se melhorar o desempenho de uma heurística construtiva.

Na terceira parte descreveremos o modelo que utiliza a meta-heurística de

Algoritmos Genéticos na resolução do problema. Finalmente, na quarta parte

será explicado como o Algoritmo Genético foi adaptado para funcionar de forma

paralela em um cluster.

5.1. ALGORITMO ADAPTADO DE CLARKE AND WRIGHT

Nesta seção iremos detalhar como o algoritmo básico foi adaptado de forma a

atender todas as restrições práticas do problema e os resultados obtidos pelo

uso desta heurística.

68

5.1.1. Atendimento da Demanda

Como foi observado na revisão da literatura sobre o assunto, uma das

hipóteses básicas da grande maioria dos métodos de solução, inclusive da

heurística de Clarke & Wright, é que a demanda de cada uma das lojas não

pode exceder a capacidade dos veículos, pois neste caso a mesma não poderia

ser atendida em apenas uma parada. No entanto, conforme mencionado na

Seção 3.2, a maioria das lojas possui demanda superior à comportada pelos

veículos que podem atendê-las. Assim, corrigir esta distorção passa a ser, no

problema prático que estamos resolvendo, uma questão fundamental.

Neste sentido, foi implementado um algoritmo para suprir a demanda de cada

loja com caminhões lotados visitando exclusivamente aquela loja até que a

demanda remanescente seja menor do que a capacidade do maior veículo

capaz de atendê-la. Assim, garantimos que a demanda de cada loja que será

roteirizada pela heurística é menor do que a capacidade dos caminhões,

permitindo que os métodos pesquisados sejam utilizados sem maiores

problemas. Na prática, este método é bastante intuitivo, pois enviar veículos

grandes com carga completa é a forma de transporte que minimiza o custo

unitário por palete entregue.

O algoritmo proposto segue os seguintes passos:

- Para cada loja

 - Verifique qual o maior veículo que pode atender a loja

 - Enquanto a demanda remanescente for maior do que a capacidade deste

veículo

 - Envie um caminhão deste tipo com carga completa

 - Recalcule a demanda remanescente

69

5.1.2. Cálculo das Economias

Como vimos anteriormente, o objetivo da heurística é minimizar a distância total

percorrida em todas as rotas, assim, a economia que desejamos computar é a

distância economizada ao juntar duas lojas numa mesma rota. No entanto, na

operação analisada, o custo de frete pago às empresas transportadoras não é

diretamente proporcional à distância percorrida pelo caminhão. Este custo é

calculado com base em regiões geográficas pré-definidas, e negociado a priori.

Cada uma destas regiões possui um custo fixo por viagem que chamaremos de

Ci, independentemente da distância real percorrida. Caso o caminhão seja

designado para atender mais de uma loja na mesma viajem, é cobrado além de

Ci um custo extra para cada outra loja atendida (Deltai). Se as lojas estiverem

em regiões cujos custos de atendimento sejam diferentes entre si, será cobrado

pelo maior valor. Desta forma, o custo de atender uma determinada rota pode

ser definido como:

Onde N representa o número de lojas atendidas pela rota e CR o custo total da

rota.

Sabendo que o custo de frete é calculado deste modo, podemos adaptar o

conceito original de economia proposto no algoritmo para adequá-lo ao caso

prático. Vejamos o que ocorre no exemplo abaixo:

() () ()nn DeltaDeltaDeltaNCCCCR ,...,,max1,...,,max 2121 ⋅−+=

70

Figura 5.1 - Exemplo do cálculo modificado das economias (elaborado pelo autor)

Neste caso onde CR é o custo de uma rota, assumindo que Ci > Cj e Deltai >

Deltaj, a economia obtida pela junção das lojas i e j na mesma rota seria:

Sij = Cj – Deltaj

Num caso genérico teríamos:

5.1.3. Frota Heterogênea

Ao contrario do que ocorre na heurística básica de Clarke & Wright, no modelo

que estamos criando existe a possibilidade de se utilizar diversos tipos de

veículos para percorrer cada rota. Este fato adiciona maior complexidade ao

problema e deve ser cuidadosamente incorporado do algoritmo desenvolvido

para sua solução. Para lidar com esse fato o algoritmo funciona da seguinte

maneira:

0

i

j

CR = Ci +Cj CR = max(Ci ,Cj)+max(Deltai, Deltaj)

0

i

j

Sij = min(Ci, Cj) – min(Deltai, Deltaj)

71

• Assim como no algoritmo original, Inicialmente são criadas rotas

individuais para atender cada uma das lojas;

• A cada rota é atribuído o menor caminhão capaz de atender a demanda

da respectiva loja;

• Quando duas lojas são avaliadas para se juntar em uma mesma rota,

caso a demanda das duas combinadas ultrapasse a capacidade do

veiculo atual, o menor veiculo capaz de atender essa demanda é

designado para a rota.

Seguindo estes passos durante a execução da heurística de Clarke & Wright,

garantimos que no final do processo, apenas rotas que respeitem a capacidade

dos veículos serão formadas e que os menores veículos possíveis serão

alocados para cada rota. Desta forma, caso seja possível atender uma rota com

um veículo menor, estaremos minimizando os gastos com fretes uma vez que

os veículos menores possuem custo fixo mais baixo por viagem.

Por exemplo, considere duas lojas cujas demandas sejam de 5 paletes cada.

Inicialmente, a cada uma delas será atribuída uma rota percorrida por um

caminhão Leve cuja capacidade é de 7 paletes. Caso estas duas lojas sejam

unificadas num mesmo roteiro, de acordo com a regra que acabamos de definir,

a demanda combinada de 10 paletes passaria a ser atendida por um Truck com

capacidade de 14 paletes. Supondo um custo fixo de frete igual a R$100,00

para o veículo Leve e R$140,00 para o Truck, o custo de atendimento destas

duas lojas passaria de R$200,00 (2x R$100,00) para R$156,00 (R$140,00 +

R$16,00 devido a loja extra na mesma rota), resultando numa economia de

R$44,00.

72

5.1.4. Restrições no Recebimento

Com a utilização de diversos modelos de veículos, surge um problema que não

ocorre quando a frota é homogenia. Trata-se da impossibilidade de algumas

lojas receberem determinados tipos caminhões por suas dimensões não serem

compatíveis com as docas de recebimento disponíveis ou não haver espaço de

manobra, entre outros motivos. No caso do Grupo pudemos classificar as lojas

em duas categorias, as que aceitam todos os tipos de veículos e as que não

podem receber carretas.

Foram necessárias algumas adaptações na heurística original para que ela

pudesse trabalhar com esta nova restrição, principalmente no atendimento

inicial da demanda, como já foi explicado no início desta seção, e na avaliação

da viabilidade na junção de duas lojas numa rota. Neste segundo ponto as

mudanças implementadas foram as seguintes:

Deste modo garantimos que uma determinada rota formada só poderá ser

atendida por carretas se cada uma das lojas que a compõe seja capaz de

receber carretas.

- Quando duas lojas são consideradas para a formação de uma rota:

 - Caso todas as demais restrições sejam respeitadas:

 -Se a demanda considerando a nova loja for menor do que a capacidade

 do segundo maior caminhão

 - Faça a junção das rotas.

 - Se esta demanda for maior do que a capacidade da carreta:

 - Não faça a junção.

- Se a demanda ficar entre a capacidade da carreta e do segundo maior

caminhão:

 - Se todas as lojas da rota incluindo a nova podem receber carretas:

 - Faça a junção das rotas.

 - Se pelo menos uma loja não aceita carreta:

 - Não faça a junção.

73

5.2. ALGORITMO ADAPTADO META-RAPS

As heurísticas construtivas têm como grande vantagem o fato de chegarem a

soluções viáveis de boa qualidade em pouco tempo. No entanto, à medida que

os problemas reais de transporte começam a contar com mais restrições, a

qualidade destes procedimentos se deteriora. Para superar este problema

podemos utilizar procedimentos meta-heurísticos que procuram soluções

melhores iterativamente. Uma forma de se incrementar a qualidade de uma

heurística construtiva transformando-a numa meta-heurística é através do

método Meta-RaPS, cujos princípios forma detalhados no item 1.

Utilizando estes conceitos estabelecidos na revisão bibliográfica, pudemos

reformular o algoritmo de Clarke & Wright visto na seção anterior de forma a

garantir que seu desempenho fosse incrementado de uma maneira bastante

simples. Na versão utilizada do Meta-RaPS, optamos por uma estrutura ainda

mais simples de seleção da próxima atividade que requer apenas uma variável

de controle, tornando mais fácil sua implementação e entendimento.

Definimos uma variável chamada de PH que representa a probabilidade de num

dado momento a regra heurística ser utilizada na junção de dois nós para

formar uma rota. Esta variável é estabelecida no início do programa como um

valor entre 0 e 1. A cada passo do algoritmo de Clarke & Wright o programa

escolhe um número aleatório também entre 0 e1. Caso este número seja menor

do que PH a regra heurística é utilizada na formação da próxima rota. Caso este

valor seja maior do que PH, aquela atividade é ignorada e passamos à próxima

atividade da lista.

Assim, quanto maior o valor de PH, mais parecida com solução original proposta

pela heurística de Clarke & Wright a solução formada tenderá a ser.

74

Analogamente, quanto menor este valor, maior a probabilidade das duas

soluções encontradas serem diferentes. No caso extremo de PH = 1, a solução

obtida será idêntica a de Clarke & Wright. Além disso, optamos por não

implementar um procedimento de melhoria para ser utilizado no final do

processo, sendo este um potencial campo para pesquisas futuras.

Além desta modificação na estrutura básica da heurística construtiva,

implementamos também algumas modificações no procedimento inicial de

atendimento da demanda que ultrapassa a capacidade dos veículos,

incorporando elementos aleatórios. O novo procedimento funciona da seguinte

maneira:

Seguindo este procedimento, possibilitamos que a demanda remanescente

assuma valores diferentes, mas sempre menores do que a capacidade do maior

veículo que pode atendê-la. O fato da demanda que irá ser roteirizada assumir

valores distintos altera o comportamento da heurística construtiva dando origem

a soluções diferentes e potencialmente melhores.

- Para cada loja

 - Verifique qual o maior veículo que pode atender a loja

 - Enquanto a demanda remanescente for maior do que a capacidade deste

veículo

- Caso esta demanda seja maior do que a capacidade deste veículo

somada a do segundo maior veículo capaz de atendê-la:

- Envie um caminhão deste tipo com carga completa

- Caso esta demanda seja maior do que a capacidade deste veículo

somada a do terceiro maior veículo capaz de atendê-la:

 - Escolha aleatoriamente um dos dois maiores veículos

- Envie um caminhão deste tipo com carga completa

 - Caso esta demanda seja maior do que a capacidade deste veículo

somada a do quarto maior veículo capaz de atendê-la:

 - Escolha aleatoriamente um dos três maiores veículos

- Envie um caminhão deste tipo com carga completa

 - Recalcule a demanda remanescente

75

5.3. ALGORITMO GENÉTICO

O passo seguinte na busca por melhores soluções para o problema abordado

foi a implementação de um método meta-heurístico. Neste sentido, foi adotado

o Algoritmo Genético. Na presente seção, iremos detalhar de que forma a teoria

vista foi utilizada na construção deste método de solução, suas principais

características e os resultados obtidos.

Um das etapas mais importantes na implementação de um AG é a escolha da

estrutura de codificação de uma solução, ou o DNA de um indivíduo. Esta

estrutura deve ser capaz de armazenar toda a informação necessária para

representar de maneira precisa uma determinada solução.

No entanto, o material genético armazenado em um indivíduo não precisa

necessariamente representar de forma direta a solução. A informação

armazenada no DNA constitui o genótipo do indivíduo, enquanto a solução final

representa o seu fenótipo. Para passar do genótipo para o fenótipo, o algoritmo

conta com um conjunto de regras e procedimentos que lhe permite fazer esta

transição, assim como na natureza, o material genético é convertido no ‘corpo’

do indivíduo.

Como estamos trabalhando com um problema de roteirização, a solução que

desejamos obter é um conjunto de rotas que atenda a demanda das lojas de

modo a minimizar o custo da operação respeitando suas restrições. Desta

forma a estrutura da solução deve conter a informação necessária para a

construção destas rotas. No entanto, neste problema, estamos abrindo a

possibilidade de que uma loja seja visitada por vários caminhões mesmo que

sua demanda possa ser atendida por apenas um. Assim, além de determinar a

seqüência de lojas a ser atendida em cada rota, devemos determinar quantos

76

paletes serão entregues em cada uma delas. Para representar o problema

estruturado desta forma, utilizamos a seguinte codificação:

Parâmetros:

N – número de indivíduos numa população;

R – número máximo de rotas em uma solução;

T – tamanho máximo de uma rota em número de lojas visitadas;

L – número de lojas a serem atendidas;

K – tipos de caminhões disponíveis.

Índices:

i – número do elemento na população, i = 1 - N;

j – número da rota na solução, j = 1 - R;

k – posição da loja na rota, k = 1 - T.

Variáveis:

Popijk – loja visitada na posição k da rota j na solução i, Popijk = 0 - L;

Popij0 – tipo de veículo utilizado para atender a rota j na solução i, Popij0 = 1 - K.

Esta estrutura de codificação nos permite representar em um vetor solução toda

a informação necessária para o estabelecimento das rotas e dos veículos que

irão percorrê-las, no entanto não representa a quantidade de paletes que será

entregue para cada uma das lojas. Isto ocorre, pois optamos por manter a

atribuição da demanda a cada loja como uma característica fenotípica

determinada por um algoritmo simples de alocação. Desta forma mantemos

reduzido o tamanho do vetor solução e garantimos um processo de evolução

mais simples e rápido.

77

A alocação da quantidade entregue em cada parada de um veículo e

determinada pelo seguinte algoritmo:

Obedecendo este algoritmo, podemos determinar, além da seqüência de lojas

visitadas em cada rota, a quantidade entregue em cada parada. Este valor fica

armazenado na variável Qijk.

Uma vez definida a estrutura básica de codificação, o próximo passo no AG é a

geração de uma população inicial de indivíduos ou soluções. Neste trabalho

estaremos adotando duas técnicas diferentes para elaboração destes

indivíduos. Uma delas consiste na geração de valores aleatórios para cada

posição de DNA do indivíduo, o que gera soluções iniciais muito ruins, mas

garante uma ampla exploração do espaço de soluções possíveis. Outra

abordagem é o uso de uma solução inicial obtida pela heurística de Clarke &

Wright ou do Meta-RaPS. Este segundo método garante a convergência muito

mais rápida do algoritmo, mas pode conduzir a ótimos locais e limitar sua

capacidade de encontrar soluções melhores.

Outro elemento fundamental no algoritmo genético é o processo de seleção dos

indivíduos que irão se recombinar para dar origem a nova população. Como foi

exposto na teoria sobre AGs, existem muitos métodos para se fazer esta

seleção, cada qual com vantagens e desvantagens. No desenvolvimento deste

- Para cada rota de uma solução, começando da primeira:

 - Inicie com o caminhão vazio:

 - Para cada loja da rota, enquanto houver capacidade ociosa no veículo:

- Se a demanda remanescente da loja for menor do que a capacidade

ociosa:

 - Atenda toda a demanda da loja.

 - Caso contrário

 - Entregue toda a capacidade disponível e termine a rota

78

trabalho, dois dos métodos mais populares foram implementados, sendo que

um deles apresentou resultados significativamente melhores nos testes e por

isso foi o escolhido.

O primeiro método testado consiste na atribuição a cada individuo de uma

probabilidade de ser selecionado como “pai” proporcional a sua função

utilidade. Assim indivíduos que apresentam melhores soluções para o problema

possuem mais chances de se reproduzir, mas todos os indivíduos possuem

alguma probabilidade. Este método é interessante, pois garante uma amplitude

de recombinações bastante grande possibilitando o surgimento de indivíduos

bem diversificados. No entanto, esta abordagem faz com que indivíduos ruins

gerem muitos descendentes diminuindo o número de boas soluções em cada

geração.

O segundo método considerado baseia-se na seleção apenas dos melhores

indivíduos da população, para dar origem à geração seguinte. Para tanto, todos

os indivíduos de uma população são classificados numa em ordem decrescente

de acordo com sua utilidade e apenas os x melhores são escolhidos para

formar o grupo de onde serão escolhidos os pais de cada elemento da próxima

geração. x neste caso é um parâmetro de algoritmo que deve ser estabelecido

pelo usuário. Cada elemento deste grupo tem igual probabilidade de ser

escolhido.

Este segundo método, conhecido como elitismo, possibilita o surgimento de um

maior numero de indivíduos de qualidade, e assim, maior velocidade na

obtenção de boas soluções. Em todos os testes realizados este método

apresentou melhores resultados e por isso foi adotado. A escolha do parâmetro

x não apresentou impacto significativo no desempenho do algoritmo e seu valor

foi fixado em 5 após alguns testes.

79

O passo seguinte nos AGs é a recombinação dos indivíduos selecionados (por

qualquer dos métodos descritos). Para dar origem a uma nova população.

Neste ponto os algoritmos genéticos apresentam uma forma significantemente

diferente dos demais métodos de soluções de gerar novos indivíduos. Esta

função e realizada por um operador chamado de crossover.

O crossover, assim como na biologia, permite o intercâmbio de material

genético potencialmente útil na formação de novas soluções. Para controlar a

taxa de utilização deste operador existe um parâmetro Pc que estabelece a

probabilidade de que ele seja utilizado. Caso este operador não seja utilizado

para combinar duas soluções para gerar uma terceira, é feita uma copia

idêntica a um dos pais escolhidos aleatoriamente, o que representa uma

reprodução assexuada. O crossover funciona da seguinte maneira:

O processo de geração de novos elementos é seguido por outro operador

baseado na biologia; a mutação. No contexto deste problema, foram

estabelecidas três modalidades de mutação usadas em conjunto por modificar

as soluções geradas pela recombinação. A primeira forma de mutação consiste

na simples alteração da informação contida em um lócus ou variável do

problema. Neste caso, um valor aleatório, representando uma loja ou um tipo de

caminhão dependendo da posição do vetor é escolhido aleatoriamente com

uma probabilidade Pm. Como visto na literatura e comprovado com os testes,

esta probabilidade deve ser bastante baixa para garantir um bom desempenho.

- Caso seja escolhido crossover com probabilidade = Pc;

- Escolha dois indivíduos para serem os pais (X e Y);

- Escolha um ponto “z” no vetor solução para efetuar a quebra;

- Para j=1 até z e k=0 até t;

- Copie os valores de popx,j,k;

- Para j=z+1 até r e k=0 até t;

- Copie os valores de popy,j,k.

80

Caso este valor seja muito alto, varias mutações ocorrem ao mesmo tempo

destruindo soluções boas. No modelo o valor adotado para Pm foi 0,01%.

O segundo tipo de mutação implementado consiste na troca de posição de duas

lojas numa mesma rota. Assim, o conjunto de lojas visitadas por um

determinado caminhão é mantido, alterando apenas a seqüência na qual elas

são atendidas. Esta operação permite que conjuntos promissores de lojas

sejam colocados em uma seqüência que otimize seu custo de atendimento e

tenham suas restrições de janela de tempo respeitadas.

O terceiro e último tipo de mutação proposto neste modelo é a troca de lojas de

uma rota para a outra. Esta geração permite a formação de rotas atendendo

conjuntos diferentes de lojas buscando sua otimização. Estes dois últimos tipos

de mutação são implementados da seguinte forma de acordo com uma

probabilidade Pt:

Logo após o processo de geração da nova população, uma rotina simples de

correção é aplicada às soluções obtidas para eliminar algumas características

indesejáveis. Este procedimento percorre todas as rotas formadas em cada

uma das soluções fazendo o seguinte:

- Para cada variável popi,j,k com uma probabilidade = Pt;

- Escolha uma das duas formas de troca com 50% de probabilidade para cada;

- Caso seja escolhida a troca na mesma rota aleatoriamente;

- Escolha outra posição na rota aleatoriamente;

- Inverta suas posições;

- Caso seja escolhida a troca entre rotas;

- Escolha outra rota aleatoriamente;

- Escolha uma posição aleatória nesta rota;

- Inverta suas posições.

81

• Retira da rota atendida por um determinado veiculo as lojas que não

podem recebê-lo;

• Retira da rota as lojas que não estão recebendo nenhuma carga;

• Elimina a demanda entregue em posições vazias do vetor solução.

Tal rotina elimina problemas existentes nas soluções construídas a partir das

recombinações e mutações garantindo um menor número de soluções inviáveis

formadas a cada geração.

Uma vez que a nova população esteja totalmente constituída, o próximo passo

no algoritmo é a avaliação de utilidade de cada um de seus indivíduos, que

neste caso representa o custo total para atender a demanda.

Como já foi dito anteriormente, os custos de transporte são baseados em

valores fixos preestabelecidos para cada localidade acrescidos de um delta

para cada loja alem da primeira presente numa rota. A utilidade de um indivíduo

será o somatório do custo de se percorrer todas as rotas que compõe a

solução.

No entanto como o algoritmo genético baseia-se na recombinação e mutação

aleatórias, são geradas constantemente soluções que não atendem as

restrições do problema. Assim, para fazer com que o algoritmo convirja para

soluções viáveis, atribuímos uma penalidade que é somada ao custo total de

uma solução para cada restrição que não é atendida. Esta penalidade irá

diminuir a utilidade daquelas soluções que não atendem todas as restrições,

diminuindo assim sua probabilidade de gerar descendente. Por outro lado os

indivíduos que respeitarem um maior número de restrições serão beneficiados e

criarão um maior número de descendentes garantindo a convergência para

soluções implementáveis.

82

Adotamos tabém o uso de penalidades variáveis de acordo com a quantidade

de restrições desrespeitadas. Quanto maior o número de restrições

desrespeitadas de uma determinada categoria, maior a penalidade atribuída a

cada uma delas. Conseqüentemente, quando há um pequeno número de

restrições não sendo atendidas, a penalidade marginal diminui. Este

mecanismo permite que soluções fortemente inviáveis convirjam rapidamente

para soluções viáveis, dado o alto custo associado às penalidades. Da mesma

forma ele permite que soluções viáveis violem algumas restrições para explorar

melhor a sua vizinhança na busca de melhorias.

Todos estes conceitos foram utilizados no calculo da função utilidade para as

seguintes restrições:

• A demanda de uma loja não é totalmente satisfeita;

• A duração de uma rota ultrapassa a jornada máxima de trabalho;

• As janelas de recebimento não são respeitadas.

Para cada uma destas restrições foi estabelecida uma penalidade associada

cujo valor relativo irá afetar o comportamento do algoritmo até que ele convirja

para uma solução viável. Daí em diante, o valor destas penalidades não terá

grande impacto em seu desempenho.

O critério de para utilizado no algoritmo genético foi um número fixo de

iterações. Como a cada iteração várias soluções diferentes são testadas, este

parâmetro pode afetar significativamente o desempenho do algoritmo. Caso um

número pequeno de iterações seja definido, pode não haver tempo suficiente

para que boas soluções sejam encontradas. Por outro lado, se forem permitidas

muitas iterações, corremos o risco de desperdiçar muito tempo de

processamento sem que melhorias sejam obtidas.

83

Para calibrar este parâmetro fizemos vários testes variando o número de

iterações. O gráfico da Figura 5.2 apresenta a relação existente entre a

qualidade da solução obtida e o número de iterações. Como o algoritmo

genético trabalha com aleatoriedade, muitas vezes o resultado obtido para um

mesmo número de iterações é diferente em duas rodadas. Mesmo assim, a

correlação entre as duas variáveis é bastante alta.

Figura 5.2 - Correlação entre número de iterações e qualidade da solução (elaborado
pelo autor)

Outro ponto que chama a atenção no gráfico e que a partir de certo número de

iterações, a qualidade da solução não melhora muito. Na prática, optamos por

estabelecer um limite de 10.000 iterações como critério de parada para o

algoritmo.

5.4. ALGORITMO GENÉTICO PARALELO

Passaremos agora a descrever como o algoritmo genético foi paralelizado, a

forma como foi implementado e os resultados obtidos. Discutiremos os

aspectos mais relevantes e todas as adaptações feitas no algoritmo para que

este funcionasse em paralelo.

84

Conforme foi visto na Seção 2.4, existem duas maneiras básicas de se

implementar um algoritmo genético de forma paralela, uma delas trabalhando

com uma única população que tem a avaliação dos indivíduos distribuída entres

os processadores disponíveis (método global), e outra onde cada nó recebe

uma sub-população que eventualmente troca indivíduos com as outras (método

das ilhas). Neste trabalho adotamos o segundo método por ele permitir ao

algoritmo explorar um universo maior de indivíduos possibilitando o

aparecimento de soluções melhores num tempo razoável e diminuindo a

probabilidade de que o mesmo convirja para ótimos locais.

A adaptação da versão seqüencial do algoritmo para sua forma paralela foi feita

com o auxílio de funções de comunicação entre computadores disponíveis na

biblioteca padrão MPI cujos detalhes são discutidos no Anexo A. Assim como

os outros métodos de solução utilizados neste trabalho, todo o algoritmo foi

programado na linguagem C. O código fonte completo para todos os algoritmos

encontram-se no Anexo D.

A paralelização ocorre da seguinte maneira: no início da execução, um dos nós

do cluster com o qual o usuário tem interface (que chamaremos de nó 0) faz a

leitura do arquivo que contém os dados do problema e em seguida aciona os

demais nós através do comando MPI_Init() (vide Anexo A). A partir daí cada nó

executa um comando para saber quantos nós compõem a rede e qual é o seu

número neste conjunto.

Deste momento em diante, cada nó atua de maneira independente realizando

todas as etapas do algoritmo genético tradicional. Quando o algoritmo atinge

um número pré-estabelecido de gerações é executada uma rotina que realiza a

migração dos melhores indivíduos da população de um determinado nó para

um nó adjacente. Assim, caso existam 5 nós (0, 1, 2, 3, 4) os indivíduos

migrarão de 0 para 1, de 1 para 2, ... e de 4 para 0 completando o ciclo. Este

85

procedimento é repetido toda a vez que o número de gerações alcançar este

número fixado de gerações.

No final, todos os nós enviam sua melhor solução para o nó 0 que irá compará-

las e exibir como resultado final a solução que apresentar o menor custo total.

A característica do AG Paralelo de trabalhar com múltiplas populações

simultaneamente permite uma ampla exploração do espaço de soluções

aumentado as chances de se obter boas soluções. Ao mesmo tempo, a

migração de indivíduos de uma população para outra garante que nenhum nó

perca muito tempo trabalhando com uma população cujo resultado seja ruim,

pois esta será melhorada com a chegada de indivíduos de populações vizinhas.

Além disso, o fato de cada nó trabalhar a maior parte do tempo de forma

independente acarreta num baixo tráfego de rede proporcionando speedups

bastante elevados.

Combinando estas características com a capacidade de processamento

fornecida pelos 60 nós do Cluster no Tanque de Provas Numérico da Naval

(Anexo A) obtivemos resultados muito animadores, conforme será explorado no

próximo capítulo.

86

6. ANÁLISE DOS RESULTADOS

6.1. SOLUÇÃO ATUAL DA EMPRESA

O primeiro passo na análise dos resultados obtidos pelos métodos propostos é

a definição de um termo de comparação. Para tanto foi feita uma ampla análise

dos resultados atuais obtidos pela empresa no processo de abastecimento.

Nesta fase, alguns pontos chamaram a atenção e merecem ser discutidos com

mais detalhes para que a base de comparação seja compatível com o resultado

do modelo proposto.

Ao analisar os valores pagos pela empresa para as transportadoras pudemos

verificar que os mesmos diferem daqueles que seriam de se esperar com base

nos contratos, conforme pode ser observado na Tabela 4.3. Em alguns casos,

existem valores pagos na prática muito mais baixos que o esperado. Estas

diferenças decorrem principalmente de negociações pontuais com alguns

fornecedores e de ajustes, como quando, por exemplo, uma parcela do frete de

um dia é pago em outro. Por este motivo não poderemos utilizar os custos

históricos para comparar com os resultados obtidos pelo modelo, pois estes não

são calculados de forma igual, tornando necessária uma outra abordagem para

comparação.

Outro ponto que logo chama a atenção quando estudamos o histórico das

entregas efetuadas, é que muitas vezes a capacidade dos caminhões parece

ser violada. Isto ocorre na prática, pois as vezes, é possível remontar alguns

paletes e empilhá-los de modo que o volume ocupado seja menor. Para tornar

os resultados comparáveis, tendo em vista que este procedimento não pode ser

adotado no modelo, é necessário corrigir este efeito nos dados históricos.

87

Também é importante ressaltar que os valores de demanda utilizados como

dados de entrada para o modelo foram obtidos a partir do histórico de entregas.

Assim, os roteiros utilizados pela empresa estão perfeitamente adequados à

demanda que estamos adotando no trabalho. No entanto, está demanda não

necessariamente reflete os pedidos que de fato foram feitos à Central de

Programação. Isto ocorre, pois, na prática, uma parte da demanda de um dia

pode ser deixada para o dia seguinte caso se obtenha maior eficiência no

transporte.

Levando-se em conta todos estes fatores, foi necessário adotar alguns

procedimentos para criar uma base de comparação para o resultado dos

modelos a partir do histórico das operações do grupo. Isto foi feito da seguinte

forma:

• Em primeiro lugar, o valor histórico pago para as transportadoras foi

ignorado, pois este não seria comparável;

• O custo foi então calculado a partir das entregas efetivamente

realizadas com base nos custos contratuais utilizando-se exatamente

as mesmas regras adotadas no modelo;

• No caso do volume entregue na prática em um roteiro ser maior do

que a capacidade do caminhão utilizado, adotamos que este

caminhão teve que retornar ao CD antes de prosseguir com as

entregas;

• Se o volume for maior do que a capacidade mesmo que apenas uma

loja seja atendida, adotamos que um veículo maior teve que ser

utilizado.

Com todos estes ajustes pudemos finalmente obter uma solução original

tecnicamente comparável com o resultado dos modelos propostos neste

88

trabalho. Os custos após os ajustes dos 7 cenários básicos que estamos

analisando podem ser observados na tabela a seguir:

Caso Custo original
Dom. R$ 21.677
2a R$ 35.766
3a R$ 79.572
4a R$ 44.138
5a R$ 61.801
6a R$ 71.388
Sab. R$ 66.470

Tabela 6.1 - Custos ajustados dos cenários (elaborado pelo autor)

6.2. COMPARAÇÃO ENTRE OS MÉTODOS

Os métodos de solução descritos no capítulo anterior foram aplicados à

resolução do problema de abastecimento das lojas do Grupo para um conjunto

de dados selecionado representando um dia típico de operação. O dia foi

escolhido juntamente a gerência da empresa por ser uma data representativa

para as operações no restante do ano. Além desta data básica (uma 4a feira)

foram analisados outros 6 dias na mesma semana para verificar o impacto na

qualidade das soluções decorrentes da mudança no volume, tendo em vista

que nos finais de semana este é, normalmente, bem menor. A tabela a seguir

apresenta um resumo dos 7 casos considerados.

Caso Número de
lojas

Demanda total
(Qtd. Paletes)

Dom. 48 1.228,0
2a 158 1.997,0
3a 254 4.094,5
4a 214 2.269,0
5a 242 3.104,5
6a 229 3.999,0
Sab. 206 3.185,5

Tabela 6.2 - Resumo dos casos considerados (elaborado pelo autor)

89

Como o número de lojas que estamos considerando nestes problemas é muito

grande, as soluções obtidas apresentam inúmeros roteiros, o que torna inviável

a representação gráfica dos mesmos. Para não exibir uma quantidade enorme

de tabelas com os resultados, optamos por mostrá-los de forma sintética por

meio de alguns indicadores chave da qualidade das soluções. O resultado

completo para o cenário base, resolvido pelo método do algoritmo genético

paralelo encontra-se no Anexo C. Apenas para ilustrar o tipo de solução gerada

pelo método, e permitir algumas discussões, a Figura 6.1 apresenta alguns do

roteiros formados.

Figura 6.1 - Exemplo de roteiros formados pelo AG Paralelo (a, b) e pelo Meta RaPS
(c, d) para o cenário base (elaborado pelo autor)

90

O ponto que mais chama a atenção quando comparamos os roteiros formados

pelos dois métodos é que no Meta-RaPS, cada rota tende a ser composta por

lojas situadas numa mesma distância do CD. Isto ocorre, pois o método de

formação das rotas obtém as maiores economias no custo quando o frete para

as duas lojas é o mesmo, ou pelo menos parecido.

Os resultados obtidos pelos métodos descritos no capítulo anterior foram

razoavelmente diferentes entre si. A Tabela 6.3 apresenta um resumo do custo

total do processo de abastecimento para cada um dos dias estudados.

Custo total (R$) Método
Dom. 2a 3a 4a 5a 6a Sab.

Original 21.677 35.766 79.572 44.138 61.801 71.388 66.470
Clarke & Wright 22.143 30.071 71.431 37.129 55.680 65.822 60.518
Meta RaPS 21.976 29.747 71.255 36.759 55.335 65.494 59.794
AG 22.815 32.760 78.331 40.255 60.465 70.196 65.327
AG Paralelo 21.407 30.564 74.334 37.534 56.831 67.586 62.585

Tabela 6.3 - Custo total das soluções (elaborado pelo autor)

Como podemos perceber, no primeiro caso (Domingo), o AG Paralelo foi o que

apresentou o melhor resultado. No entanto, para os demais casos, o método

que proporcionou os custos mais baixos foi o Meta-RaPS. É importante notar

também que em todos os casos, o custo das soluções propostas é inferior ao

praticado atualmente pela empresa.

Como pode ser observado na Tabela 6.4, os métodos de solução propostos,

além de proporcionar uma melhoria significativa no custo total da operação,

garante que um número bem menor de restrições sejam violadas. Desta forma,

minimizamos os problemas de excesso de carga transportada nos caminhões,

jornadas muito longas para os motoristas e desrespeito às janelas de

recebimento, viabilizando não só uma melhoria nos custos como também no

nível de serviço proporcionado e na segurança das operações.

91

Restrições violadas Método
Jornada Falta Janela Capacidade

Original 8 0 ? 43
Clarke & Wright 8 0 0 0
Meta RaPS 7 0 0 0
AG 7 1 1 0
AG Paralelo 6 1 0 0

Tabela 6.4 - Restrições violadas nas soluções para o caso base (elaborado pelo autor)

A restrição de jornada de trabalho é violada algumas vezes em todos os casos,

pois algumas lojas simplesmente ficam tão longe que não podem ser atendidas

no tempo disponível. A falta é zero na solução original, pois os próprios paletes

entregues foram considerados a demanda para o modelo. No entanto, sabemos

que na prática muitas vezes o grupo deixa de entregar alguns produtos,

enviando-os apenas no dia seguinte. Nos dois AGs, um palete deixou de ser

entregue pois esta é uma restrição relaxada à qual atribuímos uma penalidade.

No Clarke & Wright e no Meta-RaPS isto não é possível pois a restrição é

rígida.

As janelas de recebimento, que também foram relaxadas nos dois tipos de AGs,

foram respeitadas em quase todos as rotas e métodos. Apenas no AG, uma loja

teve um atraso de 6 min. na entrega. Não foi possível comparar com a solução

original, pois não sabemos o horário em que as entregas foram feitas na

prática. Finalmente, a capacidade do caminhão é uma restrição rígida em todos

os modelos, e, portanto, foi sempre respeitada. Todavia, na solução original, 43

caminhões são enviados com mais paletes do que sua capacidade teórica. Isto

se deve a remontagem de paletes no momento do carregamento para ocupar

espaços vazios no veículo. Apesar de ser uma prática comum, este fato não

pode ser incorporado no modelo.

O tempo médio de processamento em cada rodada varia bastante de acordo

com método de solução utilizado. Para os algoritmos genéticos, este tempo é

diretamente proporcional ao número de iterações, e varia de acordo com o

92

número de lojas a serem atendidas. No caso da heurística construtiva ele

depende apenas do tamanho do problema, já que é executado em apenas uma

iteração. Finalmente para o Meta-RaPS, este tempo depende do número de

iterações e do tamanho do problema, mas é significativamente menor do que no

caso dos genéticos. A tabela a seguir apresenta o tempo gasto na resolução

dos modelos para cada um dos métodos e dias da semana.

Tempo de processamento (s)
Método

Dom. 2a 3a 4a 5a 6a Sab.
Clarke & Wright 0,6 3,1 20,0 9,0 14,4 12,2 9,0
Meta RaPS 12,2 111,7 392,8 265,8 361,3 291,4 231,7
AG 388,8 1.398,0 1.888,8 1.342,8 1.581,0 1.808,4 1.533,6
AG Paralelo 627,0 1.019,0 2.698,0 1.503,0 1.439,0 1.312,0 1.113,3

Tabela 6.5 - Tempos de processamento (elaborado pelo autor)

A análise da Tabela 6.5 deixa claro que o Clarke & Wright é o método mais

rápido em todos os casos. No entanto, o Meta-RaPS apresenta um tempo

médio de processamento bastante razoável, deixando um intervalo de tempo

suficiente para que o analista possa estudar as soluções e fazer os ajustes

necessários.

A solução proposta pelo modelo, independentemente do método utilizado,

consiste num conjunto de rotas, cada uma sendo percorrida por um

determinado tipo de veículo. Estas rotas podem ser entregas diretas, caso

apenas uma loja seja visitada, ou roteiros, que possuem mais de uma loja.

Os diferentes métodos de solução utilizados apresentaram resultados diferentes

não só em termos do custo total da operação, mas também quanto ao mix de

veículos utilizados e a proporção de entregas diretas. A Figura 6.2 ilustra estas

diferenças para o nosso cenário base.

93

Figura 6.2 - Comparação entre as rotas formadas para 4a feira (elaborado pelo autor)

Quando comparamos as soluções fornecidas pelo algoritmo genético

seqüencial e o paralelo, podemos notar que, a medida que o segundo obteve

resultados melhores, um número maior de roteiros foi utilizado em detrimento

das entregas diretas. Além disso, a proporção de veículos grandes (carretas e

trucks) é maior no paralelo, fato que pode ser explicado pelo menor custo

unitário proporcionado por estes veículos.

Por outro lado, quando comparamos os resultados obtidos pelo Clarke & Wright

e pelo Meta-RaPS não percebemos grandes diferenças entre eles. Isto ocorre

por que a estrutura de formação de soluções de ambos é muito parecida e,

apesar do Meta-RaPS obter soluções de melhor qualidade, estas não diferem

substancialmente daquelas obtidas pelo CW.

Finalmente, quando comparamos o Clarke & Wright ou o Meta-RaPS com os

genéticos, podemos perceber que tanto o número de entregas diretas é menor,

quanto a utilização de veículos de maior capacidade é mais significativa, o que

em parte explica os melhores resultados obtidos por estes métodos na maioria

dos casos

94

O fato das soluções propostas em geral proporcionarem resultados que utilizam

um menor número de roteiros é que irá permitir a geração de economias de

longo prazo. Isto ocorre, pois com os novos roteiros é possível redimensionar a

frota dedicada através de mudanças nos contratos garantindo tanto economias

para a empresa como a sobrevivência das transportadoras.

A economia média ponderada pelo volume da operação obtida pelo método

Meta-RaPS, foi de aproximadamente 11% ao longo da semana. Se projetarmos

este resultado para os demais dias do ano, considerando o custo total anual de

aproximadamente R$13,2 milhões, chegamos a uma economia de R$1,4

milhões apenas na operação do CD abordado neste trabalho. Dadas as

proporções da operação de abastecimento das unidades do Grupo, cada ponto

percentual de melhoria operacional representa R$132 mil de economia anual.

Este fato por si só já justifica o investimento em métodos mais eficazes de

roteirização.

Ao contrário do que imaginávamos no princípio do trabalho, o fato dos

algoritmos genéticos conseguirem ignorar a restrição de que cada loja só pode

ser atendida por um veículo não proporcionou, na maioria dos casos, resultados

melhores que o Meta-RaPS. Isto se deve principalmente a dois fatores. Em

primeiro lugar, com a eliminação desta restrição, o espaço de soluções viáveis

para o problema cresce demais, devido ao número de novas combinações

permitidas. Desta forma, o algoritmo não consegue convergir para uma solução

muito boa. O segundo fator que prejudica o desempenho do algoritmo é a

necessidade de se calcular a quantidade entregue em cada parada já que isto

não é imediato como quando adotamos a restrição de uma visita por loja (neste

caso, toda a demanda da loja deve ser atendida em cada parada). Este cálculo

extra exige um grande esforço computacional e torna o algoritmo bem mais

lento.

95

Tal fato mostra que a hipótese simplificadora que impede múltiplas entregas

numa mesma loja, apesar de restringir as soluções possíveis, é muito boa no

sentido de garantir que os algoritmos convirjam mais rapidamente para

soluções de qualidade.

Se por um lado o AG Paralelo não apresentou melhorias significativas quando

comparado ao Meta-RaPS, por outro pudemos perceber que os ganhos versus

a versão seqüencial são expressivos (em torno de 5,5%). Assim, se as técnicas

de computação paralelas puderem ser aplicadas em algoritmos que já

apresentem em suas versões seqüenciais resultados de alta qualidade, sem

dúvida os ganhos obtidos, tanto em tempo de processamento, como na

qualidade final das respostas, certamente serão consideráveis.

Um ponto importante, que não pode deixar de ser comentado neste momento, é

falta de conexão entre os valores contratuais pagos pelo grupo para as

empresas transportadoras e os drivers de custo reais da operação de

transporte. Como já discutimos anteriormente, o frete pago é definido de acordo

com a região onde a loja se situa além de um adicional para cada loja extra

visitada. Este valor não leva em conta a distância total percorrida nem o tempo

do trajeto, que são os fatores geradores de custo para a transportadora. Deste

modo, uma solução que minimiza o valor pago pela empresa não

necessariamente reduz os custos da operação para a transportadora.

Para se precaver deste custo operacional mais elevado, as transportadoras têm

que cobrar um valor mais alto do que seria possível caso a otimização fosse

conduzida considerando-se os custos reais de transporte. Assim, se fosse

possível alterar os contratos para que estes fossem baseados nos drivers reais

de custo, poderíamos negociar condições mais favoráveis para nossos

fornecedores e consequentemente baixar o custo total do processo gerando

maior valor ao longo da cadeia produtiva.

96

6.3. IMPLEMENTAÇÃO DA SOLUÇÃO

Até agora discutimos o problema de roteirização dos caminhões no processo de

abastecimento com uma abordagem bastante conceitual, focando o

desenvolvimento de modelos e sua solução através de diferentes métodos.

Estas análises nos permitiram concluir que as idéias propostas, se

implementadas, têm grande potencial para gerar economias no processo e

ganhos de produtividade. No entanto, o trabalho não termina com a resolução

dos modelos em um computador. É preciso fazer com que eles se tornem parte

da operação da empresa e sejam capazes de gerar boas soluções em todos os

casos, com flexibilidade para lidar com situações específicas. Nesta seção

estaremos explicando como os modelos se integram ao processo de

abastecimento e as mudanças necessárias neste processo para que os

mesmos possam ser utilizados na prática.

O novo processo, para absorver os modelos propostos anteriormente, deve ser

ligeiramente diferente daquele apresentado no Item 1. A figura a seguir

apresenta de forma simplificada o processo proposto:

Figura 6.3 - Novo processo de abastecimento

Até o momento em que os pedidos chegam a central de programação não

estamos propondo nenhuma alteração no processo. Porém, a partir do

recebimento dos pedidos, são necessárias algumas mudanças nos

procedimentos.

97

O primeiro passo para a resolução dos modelos é a criação dos arquivos que

contém os dados de entrada. Este procedimento é bastante simples tendo em

vista que um único arquivo no formato txt é utilizado. A única ação necessária

por parte dos operadores é fazer a consolidação da demanda de todas as lojas

a cada dia e atualizar o cadastro caso novas lojas sejam inauguradas (ou

fechadas). Seria possível inclusive automatizar este procedimento via sistema,

sem grandes dificuldades, o que tornaria o processo ainda mais eficiente.

Uma vez tendo sido gerados os arquivos de entrada, o modelo se encarrega de

criar os roteiros apropriados para atender a demanda específica daquele dia,

independentemente do método de solução que venha a ser utilizado. Como

resultado, são gerados arquivos de saída especificando a seqüência de lojas

que cada um dos roteiros deve atender, bem como os caminhões que irão

percorrê-los e o horário de cada parada.

Para que o processo seja 100% capaz de se adequar a todas as restrições

práticas é fundamental que um analista reveja as soluções propostas pelo

modelo. Isto se dá, pois podem ocorrer situações imprevistas, como pedidos

emergenciais, acidentes com caminhões, vias interditadas, etc. que não podem

ser consideradas no modelo. Desta forma o analista, com base na sua

experiência, poderá adaptar os roteiros criando soluções viáveis em todos os

casos.

Uma vez que os roteiros estejam prontos, o processo de carregamento dos

caminhões e transporte físico ocorre exatamente como era antes, concluindo o

abastecimento.

Apesar de na teoria a metodologia proposta poder funcionar sem grandes

problemas, proporcionando resultados de boa qualidade, na prática, ela ainda

não foi testada. Neste sentido, o próximo passo lógico seria realizar um teste

98

piloto com a demanda de um dia para validar o modelo, bem como sua

viabilidade de implementação.

A maior mudança, no entanto, não está no fluxo do processo, mas sim no

conceito utilizado para a formação dos roteiros. Hoje, existem alguns roteiros

pré-definidos que são utilizados para formar as rotas de entrega. Estes roteiros

ficam armazenados no sistema e são utilizados sistematicamente para se

planejar as entregas, independentemente da demanda específica do dia. Desta

forma, apesar de proporcionar boas soluções na maioria dos casos, o método

atual não permite que as rotas sejam otimizadas diariamente. O método que

estamos propondo garante que as peculiaridades dos pedidos de cada dia

sejam levadas em conta na formação dos roteiros. Assim, podemos trabalhar

com rotas muito diferentes das usadas atualmente, o que pode gerar

desconforto tanto para os analistas como para os motoristas que já estão

acostumados com os roteiros usados hoje em dia.

Para garantir que o novo método seja utilizado na prática é fundamental

assegurar que todos os funcionários envolvidos no processo de abastecimento

estejam a par das economias e ganhos de produtividade proporcionados,

fazendo com que eles passem a aceitar as mudanças e não se oponham à sua

utilização.

Do ponto de vista prático, pudemos observar que o Meta-RaPS é um método

que apresenta uma ótima relação custo-benefício, dado que ele é facilmente

implementável podendo ser rodado em um único computador, e apresenta bons

resultados. Já o algoritmo genético paralelo consegue obter as melhores

soluções apenas nos problemas menores, e sua implementação exige a

utilização de um cluster que representa um investimento considerável, além de

acarretar em custos de manutenção e depreciação significativos.

99

Assim, podemos concluir que num primeiro momento o mais indicado seria a

adoção do método Meta-RaPS. Caso este tenha uma boa aceitação e

proporcione os resultados esperados, haverá um tempo para que o modelo seja

perfeitamente ajustado às condições práticas. Assim, poderemos avaliar se os

ganhos adicionais proporcionados por métodos mais sofisticados como o AG

Paralelo justificam o investimento em um cluster.

É válido lembrar que, caso o cluster seja adotado, sua utilização estará restrita

à uma hora por dia, o que garante muito tempo livre para que outras aplicações

sejam desenvolvidas. Conforme visto no item 1, os clusters podem ser usados

para uma série de aplicações empresariais como simulações financeiras,

modelagem de processos, etc. o que pode gerar outros benefícios que

justifiquem o investimento.

100

7. CONCLUSÕES

O presente trabalho apresentou um método científico para a resolução do

problema de abastecimento das lojas do grupo varejista resultando em

melhorias significativas em relação ao processo atual. Estas melhorias puderam

ser obtidas graças à formulação do problema de modo a incorporar as

restrições operacionais enfrentadas na prática, e à combinação de diferentes

técnicas de solução buscando aproveitar as melhores características de cada

uma delas.

Além de apresentar uma forma estruturada de resolução de problemas de

roteamento de veículos, o trabalho introduziu o conceito de Computação

Paralela que vem sendo cada vez mais utilizado em diversas áreas do

conhecimento, e como o mesmo pode ser implementado na solução deste tipo

de problema. De fato, a combinação de algoritmos eficientes, com a capacidade

de processamento proporcionada pela computação paralela garante a obtenção

de soluções muito boas num intervalo de tempo compatível com as

necessidades da operação.

Este trabalho permite concluir que a utilização de heurísticas construtivas é uma

forma simples e rápida de se obter melhorias nas soluções quando comparadas

àquelas obtidas empiricamente. A adoção de meta-heurísticas mais

sofisticadas, no entanto, é uma abordagem interessante, pois permite encontrar

soluções ainda melhores. Este fato é particularmente útil quando a empresa

possui operações de grande porte, onde cada pequeno ganho percentual na

qualidade da solução pode significar grandes quantias no resultado financeiro

da mesma.

A heurística construtiva de Clarke & Wright se mostrou uma ferramenta

extremamente prática, seja pela simplicidade conceitual do método das

101

economias e facilidade de implementação, flexibilidade para se adaptar a

diversas restrições operacionais, e pelo baixo tempo de processamento. Outro

ponto importante é a possibilidade de obter rápidas melhorias nesta heurística

através do algoritmo Meta-RaPS que a transforma numa meta-heurística pela

introdução de elementos aleatórios no processo de formação de rotas. Os

algoritmos genéticos que permitem a realização de buscas mais amplas no

espaço de soluções viáveis e o uso de clusters para a paralelização do código e

aumento do poder de processamento se mostraram ferramentas bastante

interessantes, mas que na prática não conduziram a resultados

significativamente melhores.

Finalmente, é importante indicar que os métodos utilizados neste trabalho

podem ser o objeto de novas pesquisas para que sejam ainda mais

aprofundados e adaptados a novos problemas práticos. No caso específico da

empresa em questão, estes mesmos métodos podem ser adaptados para sua

futura utilização em diferentes categorias de produtos, tais como frutas,

legumes e verduras, carga refrigerada, etc. Além disso, todo trabalho aqui

apresentado pode ser implementado com maior abrangência geográfica

incluindo todos os centros de distribuição e lojas do grupo no Brasil. Alguns

novos critérios e restrições também poderiam ser adicionados em futuras

implementações, dentre eles principalmente a priorização de pedidos.

Além disso, como foi visto na seção 6.1, nem todos os aspectos práticos da

operação de abastecimento puderam ser incorporados ao modelo. O principal

deles, que poderia vir a ser considerado em trabalhos futuros é a remontagem

de paletes. Este procedimento permite que um caminhão que ainda não tenha

atingido o limite de peso, possa receber paletes extras, que são remontados

para ocupar o volume ocioso. Apesar de ser mais demorado, este procedimento

permite uma ocupação melhor do veículo e a conseqüente redução dos custos,

podendo ser considerado em estudos futuros.

102

BIBLIOGRAFIA

BALLOU, RONALD H. Gerenciamento da Cadeia de Suprimentos:

Planejamento, Organização e Logística Empresarial. São Paulo. Bookman,

2001.

CANTÚ-PAZ, ERICK Implementing Fast and Flexible Parallel Genetic
Algorithms, Practical Handbook of Genetic Algorithms v.3, p.65-81, 1999.

CLARKE, G.; WRIGHT, J.W. Scheduling of Vehicles from a Central Depot to
a Number of Delivery Points. Operations Research, v.12, p.568-581, 1964.

CORDEAU, J-F.; GENDREAU, M.; LAPORTE, G. A Guide to Vehicle Routing
Heuristcs. Journal of Operational Research Society, n.53, p.512-522, 2002.

CUNHA, CLÁUDIO B. Uma Contribuição para o Problema de Roteirização

de Veículos com Restrições Operacionais. Tese de Doutorado – Escola

Politécnica da Universidade de São Paulo, 1997.

FISHER, M.; JAIKUMAR, R. A Generalized Assignment Heuristics For

Vehicle Routing. Networks, v.11, p.109-124, 1981.

FUH-HWA, L.; SHENG-YUAN, S. A Method for Vehicle Routing Problem
with Multiple Vehicle Types and Time Windows. Department of Industrial

Engineering and Management – National Chiao Tung University, 1999.

GOLDEN, B.L.; ASSAD, A.A. Vehicle Routing: Methods and Studies. Elsevier

Science Publishers B.V., Amsterdam, 1988.

103

HAJRI-GABOUJ, S.; DARMOU, S. A Hybrid Evolutionary Approach for a
Vehicle Routing Problem with Double Time Windows for the Depot and
Multiple Use of Vehicles. Institut National des Sciences Appliquées et de

Technologie, 2003.

HWANG, K.; Briggs, F. A. Computer Architecture and Parallel Processing.

McGraw-Hill International Editions, 1984.

LUNA, H. P. L.; GOLDBARG, M. C. Otimização Combinatória e Programação

Linear. 5 ed. Rio de Janeiro: Editora Campus, 2000.

MITCHELL, M. An Introduction to Genetic Algorithms. Cambridge: The MIT

Press, 1996.

MIURA, M. Resolução de um Problema de Roteamento de Veículos em
uma Empresa Transportadora. Trabalho de Formatura (Graduação) – Escola

Politécnica, Universidade de São Paulo. São Paulo, 2003.

MORAGA, R. et al. Solving the Capacitated Vehicle Routing Problem Using
the Meta-RaPS Approach. Industrial Engineering and Management Systems

Department.

NAVAUX, P. O. A. Introdução ao Processamento Paralelo. RBC - Revista

Brasileira de Computação, v.5, n.2, p.31-43, Outubro, 1989.

OCHI, L.; VIANNA, D.; DRUMMOND, L. A Parallel Evolutionary Algorithm for

the Vehicle Routing Problem with Heterogeneous Fleet. PGCC –

Universidade Federal Fluminense.

104

OMBUKI, B.; ROSS, B. J.; HANSHAR, F. Multi-objective Genetic Algorithms
for Vehicle Routing Problem with Time Windows. Department of Computer

Science - Brock University, 2004.

PARREIRAS, L. Modelo Genético-Neural de Gestão de Carteira de Ações.

Trabalho de Formatura (Graduação) – Escola Politécnica, Universidade de São

Paulo. São Paulo, 2003.

PELIZZARO, CLÁUDIA Avaliação do Desempenho do Algoritmo de um

Programa Comercial para Roteirização de Veículos. Tese de Mestrado –

Escolha de Engenharia de São Carlos, 2000.

PEREIRA, F.; TAVAREZ, J. GVR: a New Genetic Representation for the

Vehicle Routing Problem, Instituto Nacional de Engenharia de Coimbra, 2002.

PITANGA, M. Computação em Cluster. 2004. Disponível em:

<www.clubedohardware.com.br/cluster.html>. Acessado em: 16 ago. 2004.

SANTANA, R.; SANTANA, M. Computação Paralela. Departamento de

Ciências de Computação e Estatística - USP São Carlos, 1997.

SOLOMON, M. M. Algorithms for the Vehicle Routing and Scheduling
Problems with Time Windows Constraints. Operations Research, v.35, n.2,

p.254-265, 1987.

THANGIAH, SAM R. A Hybrid GA, Simulated Annealing and Tabu Search
Heuristics for VRP with TW. Practical Handbook of Genetic Algorithms v.3,

p.347-376, 1999.

WINSTON, W. L. Operations Research: Applications and Algorithms.

California: Duxbury Press, 1994.

i

ANEXOS

ANEXO A – Biblioteca MPI

As bibliotecas de programação mais utilizadas para trabalhar com clusters do

tipo Beowulf, dentre as diversas opções disponíveis, são:

OpenMP

O OpenMP tem como objetivo prover a comunicação entre processadores com

memória compartilhada, ou em máquinas que simulem memória compartilhada

em cima de memória distribuída. O OpenMP divide as iterações entre os

processadores disponíveis, fazendo com que num mesmo código existam

trechos que rodam de forma seqüencial e trechos que rodam de forma paralela.

Embora não seja um método que possibilite uma grande otimização do

processamento, se comparado com os outros métodos de paralelismo, o

OpenMP possui a vantagem de ser de fácil utilização, pois o processo de

paralelização do código existente é extremamente simples.

PVM (Parallel Virtual Machine)

A idéia do PVM consiste em montar uma máquina virtual de n processadores e

usá-los para executar tarefas simultâneas. O PVM é dividido em três partes

principais:

• Console: usado para montar a máquina paralela virtual.

• Daemon: um programa que roda em cada máquina do ambiente

estabelecendo a comunicação entre as diversas máquinas.

ii

• Biblioteca: é na biblioteca que residem as funções e sub-rotinas que

instruem o código a dividir as tarefas entre os daemons.

A biblioteca dispõe de recursos que possibilitam manipular qualquer elemento

do seu ambiente virtual, inclusive em tempo de execução, embora não seja

muito eficiente fazê-lo dessa forma, devido ao custo computacional de se

adicionar e retirar máquinas. O ideal é criar a máquina virtual fora do código,

através do console, e usá-la várias vezes, ou mesmo deixá-la ativa enquanto as

máquinas estiverem ligadas, além de possibilitar disparar e matar processos a

partir do console.

MPI (Message Passing Interface)

O MPI é uma tentativa de padronização do paradigma da troca de mensagens,

que foi sugerida por um grupo de trabalho formado por pessoas da indústria,

governo e universidades. Ele é constituído por um padrão de troca de

mensagens com sintaxe definida, mas preservando características exclusivas

de cada arquitetura, inclusive para arquiteturas de memória compartilhada. O

principal objetivo do MPI é otimizar a comunicação e aumentar o desempenho

computacional das máquinas, não possuindo dessa forma gerenciamento

dinâmico de processos e processadores.

Embora exista a restrição citada acima, os programas escritos em MPI tendem

a ser mais eficientes pelo fato de não haver acúmulo na carga de processos em

tempo de execução. A diferença básica entre o MPI e o PVM é que, ao

contrario do anterior, no MPI existe um único código fonte igual para todas as

máquinas e conseqüentemente um único processo rodando.

Esta biblioteca, por proporcionar o desenvolvimento de códigos mais eficientes

e permitir grande controle sobre a forma como os processadores se

comunicam, foi adotada na elaboração dos algoritmos paralelos neste trabalho.

iii

Assim, consideramos apropriado detalhar um pouco melhor seu funcionamento

a seguir.

O MPI é uma biblioteca com funções para troca de mensagens, responsável

pela comunicação e sincronização de processos. Dessa forma, os processos de

um programa paralelo podem ser escritos em uma linguagem de programação

seqüencial, tal como C ou Fortran.

O MPI funciona da seguinte forma: cada máquina ou nó recebe uma copia do

código fonte e um nome. Cada nó começa a executar o programa a partir da

primeira linha de comando utilizando as seguintes diretrizes:

• Executar todas as linhas de comando não nomeadas;

• Executar as linhas de comando nomeadas com o mesmo nome do nó;

• Não executar as linhas de comando com o nome de outro nó.

Para que o programa siga essas diretrizes, o procedimento padrão consiste na

inclusão de vários comandos IF, com a seguinte estrutura: "Se eu sou o nó tal,

faço isso... Senão faço aquilo...".

A programação em MPI utiliza um conjunto próprio de funções básicas de

comunicação que iremos detalhar um pouco melhor, visando tornar mais

simples o entendimento dos algoritmos paralelos propostos neste trabalho.

• MPI_Init: inicializa um processo MPI.

 Sintaxe: int MPI_Init (int *argc, char *argv[])

Onde: argc - apontador para a quantidade de parâmetros da linha de

comando

iv

 argv - apontador para um vetor de strings

• MPI_COMM_RANK: identifica um processo dentro de um determinado

grupo.Retorna sempre um valor inteiro entre 0 e n-1, onde n é o número

de processos.

Sintaxe: MPI_COMM_RANK (comm, rank);

Onde: comm - comunicador do MPI

 rank - variável inteira com o numero de identificação do processo

• MPI_COMM_SIZE: retorna o número de processos dentro de um grupo.

Sintaxe: MPI_Comm_size (comm, size);

Onde: comm - comunicador do MPI

size - variável inteira que retorna o número de processos iniciados

pelo MPI

• MPI_Send: rotina básica para envio de mensagens no MPI.

Sintaxe: MPI_Send (sndbuf, count, dtype, dest, tag, comm);

Onde: sndbuf - identificação do buffer (endereço inicial de onde os dados

serão enviados)

 count - número de elementos a serem enviados

 dtype - tipo de dado

 dest - identificação do processo destino

 tag - rótulo (label) da mensagem

 comm - comunicador do MPI

v

• MPI_Recv: rotina básica para recepção de mensagens no MPI.

Sintaxe: MPI_Recv (recvbuf, count, dtype, source, tag, comm, status);

Onde: recvbuf - identificação do buffer (endereço onde os dados serão

recebidos)

 count - número de elementos a serem recebidos

 dtype - tipo de dado

 source - identificação do processo emissor

 tag - rótulo (label) da mensagem

 comm - comunicador do MPI

 status - vetor de informações envolvendo os parâmetros source e

tag

• MPI_Finalize: finaliza um processo MPI. Portanto deve ser a última

rotina a ser chamada por cada processo. Sincroniza todos os processos

na finalização de uma aplicação MPI.

Sintaxe: MPI_Finalize();

Para obter maiores detalhes sobre o MPI consulte o site: www.lam-mpi.org. Lá

estão disponíveis para download todos os softwares necessários para se

trabalhar com o MPI, além de guias detalhados e cursos on-line sobre a

ferramenta.

vi

ANEXO B – O Cluster

O Cluster no qual todos os experimentos com algoritmos paralelos foram

executados faz parte de um grande projeto conhecido com Tanque de Provas

Numérico (TPN). Este projeto, conduzido em conjunto por uma série de

universidades, empresas e institutos de pesquisa, com sede na Escola

Politécnica da USP tem como objetivo criar um simulador de plataformas de

petróleo e sistemas flutuantes para ser utilizado em conjunto com o tanque de

provas físico no projeto de plataformas e embarcações.

Dada a grande complexidade deste tipo de análises que envolvem uma série de

cálculos hidrodinâmicos e de elementos finitos surgiu a necessidade de se

utilizar sistemas com alta capacidade de processamento. Neste sentido foi

proposta a construção de um Cluster que oferecesse alto desempenho a um

custo muito mais baixo do que a aquisição de um supercomputador equivalente.

O projeto do Cluster foi estruturado em três etapas: a construção de um

protótipo com 10 nós, a criação do primeiro cluster com 60 nós do modelo

Pentium III 866MHz e finalmente o segundo cluster com mais 60 nós Pentium

IV 2.4GHz. Os experimentos relatados neste trabalho foram realizados no

segundo cluster que será mais bem detalhado a seguir.

A especificação para a montagem de 63 máquinas, sendo 60 nós do cluster e

mais 3 máquinas reserva foram as seguintes:

• Motherboard Intel GERG2LK

• Placa de rede Gigabit Ethernet on board

• Processador Intel Pentium 4 2.4 GHz com barramento de 533

MHz

• Memória DDR 333 de 512 Mbytes

vii

• Hard Disk ATA 133 de 40 Gbytes

• Gabinete de 4U

A Figura 1.1.1 a seguir mostra a vista frontal parcial do cluster que foi montado

com gabinetes tipo rack em armários com ventilação e sistema de suprimento

de energia independentes. A Figura 1.1.2 apresenta a vista traseira do Cluster

enfatizando o cabeamento de rede e o suprimento de energia garantido por um

no-brake que permite o funcionamento das instalações por até 2h caso falte

energia, localizado na parte inferior dos armários.

Figura A.1 - Vista frontal parcial do Cluster

Figura A.2 - Vista traseira parcial do Cluster

viii

A comunicação entre os nós deste segundo Cluster é feita através de uma rede

do tipo Gigabit Ethernet que permite um tráfego de rede 10 vezes maior do que

as redes convencionais. Os três switches que controlam esta rede, o servidor

de backup que armazena os dados dos casos rodados no cluster, o no-break e

o nó de controle, que monitora a temperatura e as condições de operação dos

demais nós podem ser vistos na figura A.3.

Figura A.3 - De cima para baixo: nó de controle, switches Gigabit (pretos), switches
100Mbit (brancos), servidor de backup e no-breake.

ix

ANEXO C – Resultados Detalhados

A tabela abaixo apresenta o resultado detalhado da solução gerada pelo

método do Algoritmo Genético Paralelo para o caso base da 4a feira.

Rota Lojas Veículo Tempo (h) Distância (Km) Frete (R$)

1 173, 193, 46 Truck 6,7 49,2 170,00
2 56, 139, 174 Leve 8,0 80,2 122,00
3 108, 43, 161 Truck 8,0 85,5 170,00
4 13, 211, 114 Truck 8,0 83,5 196,00
5 133, 130, 39 Truck 9,8 192,9 340,20
6 64, 155 Truck 9,1 218,7 267,80
7 132, 12 Truck 7,8 192,4 329,20
8 127, 40 Leve 8,7 201,1 222,20
9 27, 196 Truck 4,5 31,5 140,00

10 116, 20 Truck 9,0 56,2 154,00
11 201, 169 Truck 9,5 81,9 180,00
12 41, 34 Truck 8,8 206,3 283,20
13 192, 81 Carreta 8,9 42,3 206,00
14 11, 122 Leve 9,1 114,2 140,00
15 67, 48 Truck 5,6 58,2 154,00
16 24, 26 Truck 4,9 41,8 154,00
17 89, 90 Carreta 8,3 179,9 456,00
18 97, 101 Carreta 8,5 198,3 426,00
19 104, 74 Carreta 6,0 71,2 206,00
20 197, 22 Truck 5,8 67,1 154,00
21 137, 129 Truck 7,2 153,9 288,80
22 189, 92 Truck 7,2 52,9 154,00
23 47, 85 Truck 5,7 63,7 154,00
24 162, 163 Truck 9,6 106,2 180,00
25 148, 134 Truck 10,0 272,9 446,00
26 33, 203 Truck 9,5 76,5 154,00
27 65, 179 Truck 9,2 229,7 267,80
28 117, 55 Truck 9,4 49,5 154,00
29 115, 208 Truck 9,9 71,6 154,00
30 19, 213 Truck 5,4 54,2 154,00
31 66, 32 Truck 9,6 65,3 154,00
32 155, 118 Truck 6,5 99,2 180,00
33 57, 14 Truck 4,9 43,1 154,00
34 142, 171 Truck 5,4 58,3 154,00
35 129, 128 Truck 8,5 188,4 300,80
36 156, 54 Truck 9,2 78,3 154,00
37 153, 154 Truck 7,2 153,3 209,40
38 204, 121 Truck 9,6 70,5 154,00
39 38, 131 Truck 9,2 223,4 325,00

x

Rota Lojas Veículo Tempo (h) Distância (Km) Frete (R$)
40 176, 45 Truck 7,4 61,2 154,00
41 190, 3 Truck 9,4 56,2 154,00
42 191, 143 Truck 9,5 63,2 154,00
43 158, 151 Truck 9,6 69,7 154,00
44 109, 135 Leve 7,8 154,1 211,20
45 5, 182 Truck 8,8 48,8 154,00
46 70, 120 Truck 9,9 275,9 271,20
47 124, 195 Truck 9,1 67,6 154,00
48 126, 138 Truck 8,9 208,4 213,00
49 149, 152 Truck 9,2 221,1 288,80
50 82, 83 Truck 8,1 95,9 154,00
51 25, 207 Truck 9,2 47,4 154,00
52 50, 210 Truck 8,9 227,4 271,20
53 141, 29 Truck 6,0 74,2 154,00
54 18, 140 Truck 9,8 78,4 154,00
55 113, 112 Truck 5,9 71,1 154,00
56 88, 202 Truck 8,4 185,4 283,20
57 119, 181 Leve 6,1 84,6 124,00
58 79, 172 Leve 8,3 82,5 124,00
59 17, 145 Truck 8,8 204,0 300,80
60 86, 157 Leve 7,0 108,9 106,00
61 160, 68 Truck 10,0 110,0 154,00
62 184, 194 Leve 8,1 165,4 154,60
63 23, 206 Leve 5,1 48,9 106,00
64 28, 111 Truck 5,2 48,6 154,00
65 185, 209 Truck 10,0 284,6 289,80
66 105, 87 Carreta 8,9 190,2 368,00
67 200, 157 Leve 6,8 99,6 106,00
68 198, 51 Truck 5,9 70,4 154,00
69 180, 144 Truck 9,1 50,7 154,00
70 1, 188 Truck 4,6 34,5 140,00
71 10, 178 Truck 7,6 169,7 300,80
72 44, 8 Truck 15,2 697,6 824,00
73 199, 42 Truck 5,8 66,2 154,00
74 213, 34 Truck 5,9 71,0 180,00
75 125, 214 Truck 9,8 76,9 154,00
76 168, 170 Truck 7,8 192,4 329,20
77 98 Carreta 5,9 165,9 433,00
78 93 Truck 4,3 79,0 164,00
79 80 Carreta 3,9 63,0 222,00
80 77 Carreta 6,2 182,7 392,00
81 69 Leve 3,1 36,6 90,00
82 187 Leve 2,6 22,3 82,00
83 166 Truck 2,2 13,0 124,00
84 84 Truck 4,4 84,4 138,00
85 60 Leve 7,7 294,3 227,20

xi

Rota Lojas Veículo Tempo (h) Distância (Km) Frete (R$)
86 189 Leve 2,8 26,4 90,00
87 103 Carreta 2,7 26,0 173,00
88 21 Leve 2,4 17,7 82,00
89 79 Carreta 4,2 74,7 222,00
90 122 Truck 5,1 114,1 172,00
91 61 Leve 9,7 444,4 338,40
92 73 Carreta 2,5 19,8 173,00
93 167 Truck 2,4 18,0 124,00
94 184 Truck 3,8 58,2 138,00
95 153 Leve 5,7 153,3 138,60
96 80 Carreta 3,9 63,0 222,00
97 146 Leve 7,9 311,4 401,20
98 53 Leve 3,4 45,1 90,00
99 94 Carreta 3,2 39,8 190,00
100 85 Leve 3,9 62,2 90,00
101 72 Carreta 6,2 182,7 392,00
102 37 Leve 13,7 697,6 573,00
103 86 Truck 4,2 74,0 138,00
104 183 Leve 8,4 347,6 249,20
105 31 Leve 9,7 444,4 338,40
106 15 Truck 2,9 30,8 124,00
107 150 Leve 2,4 18,0 82,00
108 4 Leve 3,2 37,0 90,00
109 99 Truck 12,1 602,7 684,00
110 118 Truck 4,5 86,8 164,00
111 91 Carreta 3,4 43,9 190,00
112 71 Truck 3,2 39,7 138,00
113 58 Truck 8,9 380,7 373,80
114 30 Leve 8,4 347,6 249,20
115 52 Leve 3,2 39,3 90,00
116 123 Truck 4,2 74,2 164,00
117 76 Carreta 3,6 51,3 190,00
118 75 Carreta 3,9 61,0 190,00
119 102 Truck 2,7 24,2 124,00
120 82 Truck 4,0 64,6 138,00
121 78 Truck 10,9 525,7 607,00
122 106 Leve 2,4 16,7 82,00
123 152 Truck 5,7 153,3 193,40
124 75 Carreta 3,9 61,0 190,00
125 98 Leve 5,9 165,9 203,20
126 35 Truck 2,8 27,4 138,00
127 76 Carreta 3,6 51,3 190,00
128 159 Truck 3,7 54,9 164,00
129 205 Leve 3,1 36,6 90,00
130 100 Carreta 4,6 92,3 222,00
131 36 Leve 4,5 88,5 130,60

xii

Rota Lojas Veículo Tempo (h) Distância (Km) Frete (R$)
132 174 Truck 3,3 42,1 138,00
133 101 Carreta 3,2 37,2 190,00
134 62 Truck 9,7 444,4 475,60
135 122 Truck 5,1 114,1 172,00
136 17 Truck 5,7 153,3 193,40
137 84 Truck 4,4 84,4 138,00
138 72 Leve 6,2 182,7 180,80
139 98 Carreta 5,9 165,9 433,00
140 101 Carreta 3,2 37,2 190,00
141 165 Leve 4,5 86,8 108,00
142 72 Carreta 6,2 182,7 392,00
143 79 Carreta 4,2 74,7 222,00
144 175 Leve 6,3 192,4 222,80
145 177 Truck 2,0 10,1 124,00
146 107 Truck 3,8 59,2 164,00
147 101 Carreta 3,2 37,2 190,00
148 71 Truck 3,2 39,7 138,00
149 110 Truck 3,5 48,9 138,00
150 55 Truck 3,2 37,1 138,00
151 101 Carreta 3,2 37,2 190,00
152 59 Truck 9,0 389,8 464,80
153 136 Leve 6,3 192,4 222,80
154 134 Truck 6,9 234,3 430,00
155 9 Leve 6,2 182,7 180,80
156 147 Truck 8,3 335,4 494,80
157 2 Truck 3,0 32,1 138,00
158 212 Truck 17,2 914,1 1.097,20
159 96 Carreta 5,7 153,3 294,00
160 59 Leve 9,0 389,8 333,20
161 63 Leve 10,3 485,2 360,40
162 154 Truck 5,7 153,3 193,40
163 164 Truck 4,3 77,7 164,00
164 103 Carreta 2,7 26,0 173,00
165 92 Leve 3,6 52,6 90,00
166 92 Leve 3,6 52,6 90,00
167 92 Truck 3,6 52,6 138,00
168 49 Truck 2,8 26,4 124,00
169 16 Leve 3,9 62,5 90,00
170 6 Leve 3,3 41,2 90,00
171 186 Truck 3,0 32,3 138,00
172 7 Leve 8,4 347,6 249,20
173 95 Truck 5,7 153,3 193,40
174 92 Truck 3,6 52,6 138,00

Tabela A.1 - Resultados detalhados (elaborado pelo autor)

xiii

ANEXO D – Código Fonte dos Programas

Algoritmos genéticos - a versão apresentada abaixo é a paralela. Caso se

deseje a seqüencial, podemos considerar este programa executado em apenas

um computador:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <mpi.h>

#define NMAX 260 //maximo de numero de lojas
#define TIPO 3 //tipos de caminhao
#define POP 60 //Numero de elementos na populacao
#define TAM 4 //Tamanho maximo de cada rota
#define MAXROT 550 //Numero maximo de rotas possiveis
#define FATOR 1.27 //Fator de correcao das distancias
#define CUST 5 //Componentes de custo
#define VMAX 10 //maximo de visitas a uma mesma loja
#define MPITAG 1

double T = 10.0; //jornada do motorista em h
double V = 175.0; //velocidade media em km/h
double Temp = 1.5; //tempo medio de parada em h

double falt = 1.0, jorn = 1.0, jan = 1.0;//penalidades

//parametros do algoritimo

int GER = 10000; //Numero de geracoes
double PMUT = 0.0001; //Probabilidade de ocorrer mutacao
double PTROCA = 0.0001; //Probabilidade de ocorrer troca
double PCROSS = 0.7; //Probabilidade de ocorrer crossover
int MRANGE = 6; //Amplitude da mutacao
int BEST = 5; //Numero de elementos a serem armazenados por geracao
int FREQ = 3; //intervalo de geracoes em que ocorre migracao

int N; //Numero de lojas
int ROT; //Numero maximo de rotas
double hi[NMAX+1], hf[NMAX+1]; //janela de recebimento da loja i
double dist[NMAX+1][NMAX+1]; //distacia entre duas lojas
double tempop[NMAX+1][NMAX+1]; //tempo de percurso entre as lojas
double X[NMAX+1], Y[NMAX+1]; //localizacao da loja
double custofaixa[NMAX+1][TIPO+1]; //custo para atender a loja
double delta[NMAX+1][TIPO+1]; //custo para atender uma loja adicional na mesma rota
int carreta[NMAX+1]; //loja pode receber carreta
double d[NMAX+1]; //demanda
double cap[TIPO+1]; //capacidade dos veiculos
int pop0[POP+1][MAXROT+1][TAM+1]; //solucoes

xiv

double pop1[POP+1][MAXROT+1][TAM+1]; //solucoes
int store0[POP+1][MAXROT+1][TAM+1]; //armazena solucoes
double store1[POP+1][MAXROT+1][TAM+1]; //armazena solucoes

double custo[POP+1][CUST]; /armazena todas as categorias de custo
double distrota[POP+1][MAXROT+1]; //armazena a distancia de cada rota
double tempo[POP+1][MAXROT+1]; //armazena a duracao de cada rota
double hora[POP+1][NMAX+1][VMAX+1]; //armazena o horario em que cada loja foi
atendida
double entrega[POP+1][NMAX+1]; //armazena a quantidade entregue para cada
loja

//Funções

int rnd(double min, double max) //Gera um numero inteiro aleatorio entre min e max
{
 int x;
 double range = 0.0;
 range = (max - min + 1);
 x = min + (int) (range*rand() / (RAND_MAX+1.0));
 return x;
}

double randomico(double n)
{
 double x;

 x = (n * rand() / (RAND_MAX+1.0));

 return x;
}

int mod(int x)
{
 if(x >= 0)
 return x;
 return -x;
}

double modulo(double x)
{
 if(x >= 0)
 return x;
 return -x;
}

double maximo(double a, double b)
{
 if(a > b)
 return a;
 return b;
}

xv

void calcdist()
{
 int i, j;

 for(i = 0; i <= N; i++)
 for(j = 0; j <= N; j++)

dist[i][j] = 6377*(acos(sin(X[i])*sin(X[j]) +
cos(X[i])*cos(X[j])*cos(modulo(Y[j]-Y[i]))))*FATOR;

}
double veloc(double x)
{
 double vel;

 vel = 16.952 + 0.3096*x + (-0.0008)*pow(x,2) + 0.0000007*pow(x,3);
 if(vel > 60)
 vel = 60;

 return vel;
}

void calctempop()
{
 int i, j;

 for(i = 0; i <= N; i++)
 for(j = 0; j <= N; j++)
 tempop[i][j] = dist[i][j] / veloc(dist[i][j]);

}

void calcrota()
{
 int i, j, k;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 distrota[i][j] = 0.0;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 {
 distrota[i][j] = distrota[i][j] + dist[0][pop0[i][j][1]] + dist[pop0[i][j][TAM]][0];
 for(k = 1; k < TAM; k++)
 distrota[i][j] = distrota[i][j] + dist[pop0[i][j][k]][pop0[i][j][k+1]];
 }
}

void gerar()
{
 int i, j, k;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 {

xvi

 pop0[i][j][0] = rnd(1,TIPO);
 for(k = 1; k <= TAM; k++)
 {
 pop0[i][j][k] = rnd(1,N);
 pop1[i][j][k] = 0;
 }
 }
}

void arrumar()
{
 int i, j, k, l, soma[MAXROT+1], ent[NMAX+1];

 for(i = 1; i <= POP; i++)
 {
 for(j = 1; j <= ROT; j++) //remove as lojas que nao recebem carreta. da rota feita
por carr.
 for(k = 1; k <= TAM; k++)
 if(pop0[i][j][0] == 1 && carreta[pop0[i][j][k]] == 0)
 {
 pop0[i][j][k] = 0;
 pop1[i][j][k] = 0;
 }

 for(j = 1; j <= ROT; j++)
 for(k = 1; k <= TAM; k++)
 {
 if(pop1[i][j][k] == 0) //retira da rota as lojas onde a entrega eh 0
 pop0[i][j][k] = 0;
 if(pop0[i][j][k] == 0) //retira o volume entregue para loja 0
 pop1[i][j][k] = 0;
 }

 for(j = 1; j <= ROT; j++) // retira os zeros das rotas
 for(l = 1; l < TAM; l++)
 for(k = 1; k < TAM; k++)
 if(pop0[i][j][k] == 0)
 {
 pop0[i][j][k] = pop0[i][j][k+1];
 pop1[i][j][k] = pop1[i][j][k+1];
 pop0[i][j][k+1] = 0;
 pop1[i][j][k+1] = 0;
 }
 }
}

void atribui()
{
 int i, j, k, l;
 double capac[MAXROT+1], ent[NMAX+1];
 double dif;

 for(i = 1; i <= POP; i++)
 {
 for(j = 1; j <= ROT; j++)

xvii

 capac[j] = cap[pop0[i][j][0]];
 for(j = 1; j <= N; j++)
 ent[j] = 0;
 for(j = 1; j <= ROT; j ++)
 for(k = 1; k <= TAM; k++)
 {
 dif = d[pop0[i][j][k]] - ent[pop0[i][j][k]];
 if(dif > 0)
 {
 if(capac[j] >= dif)
 {
 pop1[i][j][k] = pop1[i][j][k] + dif;
 ent[pop0[i][j][k]] = ent[pop0[i][j][k]] + dif;
 capac[j] = capac[j] - dif;
 }
 else
 {
 pop1[i][j][k] = pop1[i][j][k] + capac[j];
 ent[pop0[i][j][k]] = ent[pop0[i][j][k]] + capac[j];
 capac[j] = 0;
 }
 }
 }
 }
}
void calcentrega()
{
 int i, j, k;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= N; j++)
 entrega[i][j] = 0;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 for(k = 1; k <= TAM; k++)
 entrega[i][pop0[i][j][k]] = entrega[i][pop0[i][j][k]] + pop1[i][j][k];
}

void calctempo() //calcula o tempo total da rota
{
 int i, j, k;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 tempo[i][j] = 0.0;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 {
 for(k = 1; k < TAM; k++) //tempo de percurso
 tempo[i][j] = tempo[i][j] + tempop[pop0[i][j][k]][pop0[i][j][k+1]];
 tempo[i][j] = tempo[i][j] + tempop[0][pop0[i][j][1]] +
tempop[pop0[i][j][TAM]][0];

xviii

 for(k = 1; k <= TAM; k++) //tempo de parada
 if(pop0[i][j][k] > 0)
 tempo[i][j] = tempo[i][j] + Temp;
 }

}

void calchora() //calcula a hora em que cada loja é atendida e o
{ //tempo total da rota
 int i, j, k, l, n;
 double t;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= N; j++)
 for(k = 1; k <= VMAX; k++)
 hora[i][j][k] = 0.0;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 tempo[i][j] = 0.0;

 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)
 {
 if(pop0[i][j][1] > 0)
 {
 n = 1;
 t = hi[pop0[i][j][1]];
 for(l = 1; ((hora[i][pop0[i][j][1]][l] > 0)&&(l <= VMAX)); l++)
 l=l;
 hora[i][pop0[i][j][1]][l] = t;
 tempo[i][j] = tempop[0][pop0[i][j][1]];
 for(k = 2; k <= TAM; k++)
 {
 for(l = 1; ((hora[i][pop0[i][j][k]][l] > 0)&&(l <= VMAX)); l++)
 l=l;
 if(pop0[i][j][k] > 0)
 {
 t = t + Temp + tempop[pop0[i][j][k-
1]][pop0[i][j][k]];
 tempo[i][j] = tempo[i][j] + Temp +
tempop[pop0[i][j][k-1]][pop0[i][j][k]];
 if(t < hi[pop0[i][j][k]])
 {
 tempo[i][j] = tempo[i][j] + hi[pop0[i][j][k]] -
t;
 t = hi[pop0[i][j][k]];
 }
 hora[i][pop0[i][j][k]][l] = t;
 n++;
 }

 }

 tempo[i][j] = tempo[i][j] + Temp + tempop[pop0[i][j][n]][0];

xix

 }
 }
}

void calccusto()
{
 int i, j, k, n;
 double cf, cd, e;

 calcentrega();
 calcrota();
 calchora();

 for(i = 0; i <= POP; i++)
 for(j = 0; j <= CUST; j++)
 custo[i][j] = 0.0;

 for(i = 1; i <= POP; i++)//penaliza ultrapassar a jornada maxima do motorista
 for(j = 1; j <= ROT; j++)
 if(tempo[i][j] > T)
 custo[i][3] = custo[i][3] + (tempo[i][j] - T)*500*jorn;

 for(i = 1; i <= POP; i++)//penaliza ultrapassar a janela de recebimento
 for(j = 1; j <= N; j++)
 for(k = 1; k <= VMAX; k++)
 if(hora[i][j][k] > hf[j])
 custo[i][4] = custo[i][4] + (hora[i][j][k] - hf[j])*5000*jan;

 for(i = 1; i <= POP; i++) //custo de falta e sobra
 for(j = 1; j <= N; j++)
 custo[i][2] = custo[i][2] + modulo(d[j] - entrega[i][j])*5000*falt;

 for(i = 1; i <= POP; i++) //custo de transporte
 for(j = 1; j <= ROT; j++)
 {
 cf = 0.0;
 cd = 0.0;
 n = 0;
 for(k = 1; k <= TAM; k++)
 {
 if(custofaixa[pop0[i][j][k]][pop0[i][j][0]] > cf)
 {
 cf = custofaixa[pop0[i][j][k]][pop0[i][j][0]];
 cd = delta[pop0[i][j][k]][pop0[i][j][0]];
 }
 if(pop0[i][j][k] != 0)
 n++;
 }
 custo[i][1] = custo[i][1] + cf + (n-1) * cd;
 //printf("%lf %lf %d\n", cf, cd, n);
 }

xx

 for(i = 1; i <= POP; i++) // custo total
 for(j = 1; j <= CUST; j++)
 custo[i][0] = custo[i][0] + custo[i][j];

}

void rfalt()
{
 int i, j, k, stop, tipoc;

 for(i = 1; i <= POP; i++)
 if(custo[i][2] > 0)
 for(j = 1; j <= N; j++)
 if(d[j] > entrega[i][j])
 {
 if(carreta[j] = 1)
 tipoc = 1;
 else
 tipoc = 2;
 stop = 0;
 for(k = 1; (k <= ROT)&&(stop = 0); k++)
 if(pop0[i][k][1] == 0)
 {
 pop0[i][k][1] = j;
 pop0[i][k][0] = tipoc;
 stop = 1;
 }
 }
}

void evoluir2()
{
 int i, j, k, x, y, z, num;
 double min;

 for(i = 1; i <= BEST; i++) //Seleciona e armazena as 'BEST' melhores soluÃ§Ãµes da
populaÃ§Ã£o anterior
 {
 min = 99999999;
 for(j = 1; j <= POP; j++)
 if(custo[j][0] < min)
 {
 min = custo[j][0];
 num = j;
 }
 custo[num][0] = 99999999;
 for(j = 1; j <= ROT ; j++)
 for(k = 0; k <= TAM; k++)
 store0[i][j][k] = pop0[num][j][k];

 }

 for(i = 1; i <= BEST; i++) //copia de volta na populacao
 for(j = 1; j <= ROT ; j++)
 for(k = 0; k <= TAM; k++)

xxi

 pop0[i][j][k] = store0[i][j][k];

 for(i = BEST + 1; i <= POP; i++)
 {
 x = rnd(1, BEST);
 y = rnd(1, BEST);
 z = rnd(1, ROT);
 for(k = 0; k <= TAM; k++)
 {
 for(j = 1; j < z; j++)
 {
 pop0[i][j][k] = store0[x][j][k];
 pop0[i+1][j][k] = store0[y][j][k];
 }
 for(j = z; j <= ROT; j++)
 {
 pop0[i][j][k] = store0[y][j][k];
 pop0[i+1][j][k] = store0[x][j][k];
 }
 }

 for(i = 2; i <= POP; i++) // mutações
 for(j = 1; j <= ROT; j++)
 {
 for(k = 1; k <= TAM; k++)
 if(randomico(1) <= PMUT)
 pop0[i][j][k] = rnd(0,N); //na loja

 if(randomico(1) <= PMUT)
 pop0[i][j][0] = rnd(1,TIPO);// no tipo do caminhao
 }
 for(i = 2; i <= POP; i++) // troca entre rotas
 for(j = 1; j <= ROT; j++)
 for(k = 1; k <= TAM; k++)
 if(randomico(1) <= PTROCA)
 {
 z = rnd(2, POP);
 y = rnd(1, TAM);
 x = pop0[i][z][y];
 pop0[i][z][y] = pop0[i][j][k];
 pop0[i][j][k] = x;
 }
 for(i = 2; i <= POP; i++) // troca na rota
 for(j = 1; j <= ROT; j++)
 for(k = 1; k <= TAM; k++)
 if(randomico(1) <= PTROCA)
 {
 z = rnd(1, TAM);
 x = pop0[i][j][z];
 pop0[i][j][z] = pop0[i][j][k];
 pop0[i][j][k] = x;
 }
 }
 for(i = 1; i <= POP; i++)
 for(j = 1; j <= ROT; j++)

xxii

 for(k = 1; k <= TAM; k++)
 pop1[i][j][k] = 0;

}
void saida(int num)
{
 int i, j, p, n;

 FILE *arqsaida;
 char nome[100];

 sprintf(nome, "/home/winckler/guilherme2/saida/saida2.txt"); // dados das lojas
 arqsaida = fopen(nome,"w");

 for(i = 1; i <= ROT; i++)
 {
 if(pop0[num][i][1] > 0)
 {
 p = 0;
 n = 1;
 fprintf(arqsaida, "0\n");
 for(j = 1; j <= TAM; j++)
 {
 if(p == 0)
 {
 fprintf(arqsaida, "%d\n", pop0[num][i][j]);
 if(pop0[num][i][j] > 0)
 p = j;
 }
 else
 {
 if(pop0[num][i][j] > 0)
 {
 fprintf(arqsaida, "%d\n", pop0[num][i][j]);
 p = j;
 }
 else
 n++;
 }
 }
 for(j = 1; j <= n; j++)
 fprintf(arqsaida, "0\n");
 fprintf(arqsaida, "\n");
 }
 }
 fclose(arqsaida);

 sprintf(nome, "/home/winckler/guilherme2/saida/cam2.txt"); // caminhoes utilizados em
cada rota
 arqsaida = fopen(nome,"w");
 for(i = 1; i <= ROT; i++)
 if(pop0[num][i][1] > 0)
 fprintf(arqsaida, "%d\n\n\n\n\n\n\n", pop0[num][i][0]);
 fclose(arqsaida);

xxiii

 sprintf(nome, "/home/winckler/guilherme2/saida/detrota2.txt"); // caminhoes utilizados em
cada rota
 arqsaida = fopen(nome,"w");
 for(i = 1; i <= ROT; i++)
 if(pop0[num][i][1] > 0)
 fprintf(arqsaida, "%d\t%lf\t%lf\n",i, distrota[num][i], tempo[num][i]);

 fclose(arqsaida);

 sprintf(nome, "/home/winckler/guilherme2/saida/detloja2.txt");
 arqsaida = fopen(nome,"w");
 for(i = 1; i <= N; i++)
 {
 for(j = 1; j <= VMAX; j++)
 fprintf(arqsaida, "%d\t%lf", i, hora[num][i][j]);
 fprintf(arqsaida, "\t%lf\n", entrega[num][i]);
 }

 fclose(arqsaida);

 sprintf(nome, "/home/winckler/guilherme2/saida/rotas2.txt");
 arqsaida = fopen(nome,"w");
 fprintf(arqsaida, "%lf\t%lf\t%lf\t%lf\t%lf\n", custo[num][0], custo[num][1], custo[num][2],
custo[num][3], custo[num][4]);
 for(i = 1; i <= ROT; i++)
 {
 if(pop0[num][i][1] > 0)
 {
 fprintf(arqsaida, "%d", pop0[num][i][0]);
 for(j = 1; pop0[num][i][j]; j++)
 fprintf(arqsaida, "\t%d", pop0[num][i][j]);
 fprintf(arqsaida, "\n");
 }
 }
 fclose(arqsaida);
}

int main(int argc, char *argv[])
{
 int i, j, k, l, g, num, n, count;
 int rank, size;
 double bestc, crot;

 FILE *arqentrada;
 char nome[100];
 MPI_Status status;

 printf("Numero ");
 scanf("%d", &num);
 srand(num);

 sprintf(nome, "/home/winckler/guilherme2/DadosTXT/Dados28-02.txt"); // dados das
lojas
 arqentrada = fopen(nome,"r");
 fscanf(arqentrada, "%d", &N);

xxiv

 for(i=0; i<= N; i++)
 {
 fscanf(arqentrada, "%lf", &X[i]);
 fscanf(arqentrada, "%lf", &Y[i]);
 fscanf(arqentrada, "%lf", &d[i]);
 fscanf(arqentrada, "%lf", &custofaixa[i][1]);
 fscanf(arqentrada, "%lf", &custofaixa[i][2]);
 fscanf(arqentrada, "%lf", &custofaixa[i][3]);
 fscanf(arqentrada, "%lf", &delta[i][1]);
 fscanf(arqentrada, "%lf", &delta[i][2]);
 fscanf(arqentrada, "%lf", &delta[i][3]);
 fscanf(arqentrada, "%lf", &hi[i]);
 fscanf(arqentrada, "%lf", &hf[i]);
 fscanf(arqentrada, "%d", &carreta[i]);
 }
 fclose (arqentrada);

 ROT = 0;
 crot = 0.0;
 for(i = 1; i <= N; i++) //calcula o numero maximo de rotas permitido
 crot = crot + d[i];
 crot = (crot / 14) + N;
 ROT = (int)crot;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);

 if(rank == 0)
 {
 for(i = 1; i < size; i++)
 {
 n = rnd(1,1000);
 MPI_Send(&n, 1, MPI_INT, i, MPITAG, MPI_COMM_WORLD);
 }
 }
 else
 {
 MPI_Recv(&num, 1, MPI_INT, 0, MPITAG, MPI_COMM_WORLD, &status);
 srand(num);
 }

 for(i = 0; i <= POP; i++)
 for(j = 0; j <= ROT; j++)
 for(k = 0; k <= TAM; k++)
 {
 pop0[i][j][k] = 0;
 pop1[i][j][k] = 0;
 }

 for(i = 0; i <= POP; i++)
 for(j = 0; j <= ROT; j++)
 for(k = 0; k <= TAM; k++)
 {

xxv

 store0[i][j][k] = 0;
 store1[i][j][k] = 0;
 }

 for(i = 0; i <= POP; i++)
 for(j = 0; j <= N; j++)
 entrega[i][j] = 0;

 calcdist();
 calctempop();

 cap[1] = 28.0;
 cap[2] = 14.0;
 cap[3] = 7.0;

 bestc = 9999999999.0;
 num = 1;

 gerar();

 count = 1;
 for(g = 1; g <= GER; g++)
 {
 bestc = 9999999999.0;
 num = 1;

 if(g == 1)
 {
 sprintf(nome, "/home/winckler/guilherme/AG.txt"); // carrega solucao
inicial
 arqentrada = fopen(nome,"r");

 for(i = 1; i <= ROT; i++)
 {
 for(j = 0; j <= TAM; j++)
 fscanf(arqentrada, "%d", &pop0[1][i][j]);

 for(j = 0; j <= TAM; j++)
 fscanf(arqentrada, "%lf", &pop1[1][i][j]);
 }

 fclose (arqentrada);
 }

 for(i = 1; i <= ROT; i++)
 for(j = 1; j <= TAM; j++)
 pop1[1][i][j] = 0;

 atribui();
 arrumar();
 calccusto();

 j = 0;
 for(i = 1; i <= POP; i++)
 if(custo[i][0] < bestc)

xxvi

 {
 bestc = custo[i][0];
 num = i;
 j = 1;
 }

 if((j == 1)&&(rank == 0))
 printf("g: %d p: %d Total: %.6g Fret: %.5g Falt: %.5g Jorn: %.5g Jan:
%.5g\n", g, num, custo[num][0], custo[num][1], custo[num][2], custo[num][3], custo[num][4]);

 if(custo[num][2] < 40000)
 falt = custo[num][2] / 2 / 40000 + 0.5;
 else
 falt = 1.0;

 if(custo[num][3] < 20000)
 jorn = custo[num][3] / 2 / 20000 + 0.5;
 else
 jorn = 1.0;

 if(custo[num][4] < 20000)
 jan = custo[num][4] / 2 / 20000 + 0.5;
 else
 jan = 1.0;

 if(count == FREQ)
 {
 if(rank < size - 1)
 for(i = 1; i <= ROT; i++)
 for(j = 0; j <= TAM; j++)
 {
 MPI_Send(&pop0[num][i][j], 1, MPI_INT, rank +
1, MPITAG, MPI_COMM_WORLD);
 MPI_Send(&pop1[num][i][j], 1, MPI_INT, rank +
1, MPITAG, MPI_COMM_WORLD);
 }
 else
 for(i = 1; i <= ROT; i++)
 for(j = 0; j <= TAM; j++)
 {
 MPI_Send(&pop0[num][i][j], 1, MPI_INT, 0,
MPITAG, MPI_COMM_WORLD);
 MPI_Send(&pop1[num][i][j], 1, MPI_INT, 0,
MPITAG, MPI_COMM_WORLD);
 }
 if(rank > 0)
 for(i = 1; i <= ROT; i++)
 for(j = 0; j <= TAM; j++)
 {
 MPI_Recv(&pop0[POP][i][j], 1, MPI_INT, rank -
1, MPITAG, MPI_COMM_WORLD, &status);
 MPI_Recv(&pop1[POP][i][j], 1, MPI_INT, rank -
1, MPITAG, MPI_COMM_WORLD, &status);
 }

xxvii

 else
 for(i = 1; i <= ROT; i++)
 for(j = 0; j <= TAM; j++)
 {
 MPI_Recv(&pop0[POP][i][j], 1, MPI_INT, size -
1, MPITAG, MPI_COMM_WORLD, &status);
 MPI_Recv(&pop1[POP][i][j], 1, MPI_INT, size -
1, MPITAG, MPI_COMM_WORLD, &status);
 }
 count = 0;
 }

 if(g == GER)
 {
 if(rank > 0)
 {
 for(i = 1; i <= ROT; i++)
 for(j = 0; j <= TAM; j++)
 {
 MPI_Send(&pop0[num][i][j], 1, MPI_INT, 0,
MPITAG, MPI_COMM_WORLD);
 MPI_Send(&pop1[num][i][j], 1, MPI_INT, 0,
MPITAG, MPI_COMM_WORLD);
 }
 }
 if(rank == 0)
 {
 for(i = 1; i <= ROT; i++)
 for(j = 0; j <= TAM; j++)
 {
 pop0[POP][i][j] = pop0[num][i][j];
 pop1[POP][i][j] = pop0[num][i][j];
 }
 for(k = 1; k < size; k++)
 for(i = 1; i <= ROT; i++)
 for(j = 0; j <= TAM; j++)
 {
 MPI_Recv(&pop0[k][i][j], 1, MPI_INT, k,
MPITAG, MPI_COMM_WORLD, &status);
 MPI_Recv(&pop1[k][i][j], 1, MPI_INT, k,
MPITAG, MPI_COMM_WORLD, &status);
 }
 }
 if(rank > 0)
 {
 for(i = 0; i < CUST; i++)
 MPI_Send(&custo[num][i], 1, MPI_DOUBLE, 0,
MPITAG, MPI_COMM_WORLD);
 }

 if(rank == 0)
 {
 for(i = 0; i < CUST; i++)
 custo[POP][i] = custo[num][i];
 for(j = 0; j < CUST; j++)

xxviii

 for(i = 1; i < size; i++)
 MPI_Recv(&custo[i][j], 1, MPI_DOUBLE, i,
MPITAG, MPI_COMM_WORLD, &status);

 bestc = 9999999999.0;

 for(i = 1; i <= POP; i++)
 if(custo[i][0] < bestc)
 {
 bestc = custo[i][0];
 num = i;
 }

 saida(num);
 printf("%lf\n", custo[num][0]);
 }

 }

 evoluir2();
 count++;
 }

 MPI_Finalize();
 return 0;
}

Clarke & Wright - o algoritmo a seguir está adaptado ao Meta-RaPS. Para

torná-lo equivalente a heurística original, basta fazer o número de iterações

igual a 1:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define NMAX 260
#define TIPO 3
#define FATOR 1.27
#define TAM 4

int GER = 10000; //número de gerações
double PH = 0.85; //probabilidade de se seguir a regra heuristica
double T = 10.0; //jornada do motorista em h
double Temp = 1.5; //tempo médio de parada em h

int N; //numero de lojas
double cap[TIPO+1];
int roteiro[NMAX+1][NMAX+2];

xxix

int listai[(NMAX*(NMAX-1))/2], listaj[(NMAX*(NMAX-1))/2];
int carreta[NMAX+1]; // loja aceita carreta
double horario[NMAX+1]; //horário no qual a loja i é atendida
double hi[NMAX+1], hf[NMAX+1]; //janela de recebimento da loja i
double listae[(NMAX*(NMAX-1))/2];
double d[NMAX+1]; //demanda
double dem[NMAX+1]; //demanda temporária
double bdem[NMAX+1]; //armazena a demanda temporaria da melhor solucao
double dist[NMAX+1][NMAX+1]; //distancia entrer lojas
double tempop[NMAX+1][NMAX+1]; //tempo de percurso entre as lojas
double X[NMAX+1], Y[NMAX+1]; //posição das lojas
double custofaixa[NMAX+1][TIPO+1], delta[NMAX+1][TIPO+1]; //custos de transporte
int camrota[NMAX+1]; //tipo de caminha que percorre a rota
double fretep[NMAX+1]; //frete pago por rota

int setup[NMAX+1][TIPO+1]; //entregas iniciais

int bcamrota[NMAX+1];
int broteiro[NMAX+1][NMAX+2]; //armazena melhores valores
int bsetup[NMAX+1][TIPO+1];
double bfretep[NMAX+1];

double randomico(double n)
{
 double x;

 x = (n * rand() / (RAND_MAX+1.0));

 return x;
}

int rnd(double min, double max) //Gera um numero inteiro aleatorio entre min e max
{
 int x;
 double range = 0.0;
 range = (max - min + 1);
 x = min + (int) (range*rand() / (RAND_MAX+1.0));
 return x;
}

double mod(double x)
{
 if(x >= 0)
 return x;
 return -x;
}

int contno(int r)
{
 int i;
 int cont = 0;

 for(i = 1; roteiro[r][i] > 0; i++)
 cont++;

xxx

 return cont;
}

void calcdistxy()
{
 int i, j;

 for(i = 0; i <= N; i++)
 for(j = 0; j <= N; j++)
 dist[i][j] = 6377*(acos(sin(X[i])*sin(X[j]) + cos(X[i])*cos(X[j])*cos(mod(Y[j]-
Y[i]))))*FATOR;
}

double veloc(double x)
{
 double vel;

 vel = 16.952 + 0.3096*x + (-0.0008)*pow(x,2) + 0.0000007*pow(x,3);
 if(vel > 60)
 vel = 60;
 return vel;
}

void calctempop()
{
 int i, j;

 for(i = 0; i <= N; i++)
 for(j = 0; j <= N; j++)
 tempop[i][j] = dist[i][j] / veloc(dist[i][j]);

}

void calchorario(int r)
{
 int i;
 double tempo;

 tempo = hi[roteiro[r][1]];
 horario[roteiro[r][1]] = tempo;
 for(i = 2; roteiro[r][i] > 0; i++)
 {
 if(tempo + Temp + tempop[roteiro[r][i-1]][roteiro[r][i]] >= hi[roteiro[r][i]])
 tempo = tempo + Temp + tempop[roteiro[r][i-1]][roteiro[r][i]];
 else
 tempo = hi[roteiro[r][i]];
 horario[roteiro[r][i]] = tempo;
 }
}

void entregasini()
{
 int i, j, k;

xxxi

 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 setup[i][j] = 0;
 for(i = 1; i <= N; i++) //para cada loja
 {
 if(carreta[i] == 1) //se a loja aceita carreta
 {
 while(dem[i] > cap[1])
 {
 setup[i][1] = setup[i][1] + 1;
 dem[i] = dem[i] - cap[1];
 }
 }
 else //se nao aceita carreta
 {
 while(dem[i] > cap[2])
 {
 setup[i][2] = setup[i][2] + 1;
 dem[i] = dem[i] - cap[2];
 }
 }
 }
}

void entregasini2()
{
 int i, j, k, x;

 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 setup[i][j] = 0;

 for(i = 1; i <= N; i++) //para cada loja
 {
 if(carreta[i] == 1) //se a loja aceita carreta
 {
 while(dem[i] > cap[1])
 {
 if(dem[i] > cap[1] + cap[2])
 {
 setup[i][1] = setup[i][1] + 1;

dem[i] = dem[i] - cap[1];
 }
 else if(dem[i] > cap[1] + cap[3])
 {
 x = rnd(1, 2);
 setup[i][x] = setup[i][x] + 1;
 dem[i] = dem[i] - cap[x];
 }
 else
 {
 x = rnd(1, 3);
 setup[i][x] = setup[i][x] + 1;
 dem[i] = dem[i] - cap[x];
 }

xxxii

 }
 }
 else //se nao aceita carreta
 {
 while(dem[i] > cap[2])
 {
 if(dem[i] > cap[2] + cap[3])
 {
 setup[i][2] = setup[i][2] + 1;
 dem[i] = dem[i] - cap[2];
 }
 else
 {
 x = rnd(2, 3);
 setup[i][x] = setup[i][x] + 1;
 dem[i] = dem[i] - cap[x];
 }
 }
 }
 }
}

double calcpeso(int r) //calcula o peso de uma rota
{
 int i;
 double peso;

 peso = 0.0;

 for(i = 1; roteiro[r][i] > 0; i++)
 peso = peso + dem[roteiro[r][i]];

 return peso;
}

double calcpesof(int r) //calcula o peso de uma rota na solucao final
{
 int i;
 double peso;

 peso = 0.0;

 for(i = 1; roteiro[r][i] > 0; i++)
 peso = peso + bdem[roteiro[r][i]];

 return peso;
}

double calcciclo(int r) //calcula o ciclo de uma rota
{
 int i;
 double ciclo;

 ciclo = tempop[roteiro[r][0]][roteiro[r][1]];

xxxiii

 for(i = 2; ((roteiro[r][i-1] > 0) || (roteiro[r][i] > 0)); i++)
 {
 if(hi[roteiro[r][1]] + ciclo + Temp +
(tempop[roteiro[r][i-1]][roteiro[r][i]]) >= hi[roteiro[r][i]])
 ciclo = ciclo + Temp + (tempop[roteiro[r][i-1]][roteiro[r][i]]);
 else
 ciclo = hi[roteiro[r][i]] - hi[0];
 }
 return ciclo;
}

double calcdist(int r) //calcula a distancia de uma rota
{
 int i;
 double distancia;

 distancia = 0.0;

 for(i = 1; (roteiro[r][i-1] > 0 || roteiro[r][i] > 0); i++)
 distancia = distancia + dist[roteiro[r][i-1]][roteiro[r][i]];

 return distancia;
}

int checkcarr (int r)
{
 int i, c;

 c = 1;

 for(i = 1; roteiro[r][i] > 0; i++)
 if(carreta[roteiro[r][i]] == 0)
 c = 0;
 return c;
}

int checkpeso(int x)
{
 int i, p;
 double pesot;

 p = 1;

 pesot = calcpeso(x);

 if(checkcarr(x) == 1)
 {
 if(pesot > cap[1])
 p = 0;
 }
 else
 {
 if(pesot > cap[2])
 p = 0;

xxxiv

 }

 return p;
}

double calccusto()
{
 int i, j, n;
 double c, d;
 double cust = 0.0;

 /*for(i = 1; i <= N; i++)
 if(roteiro[i][1] > 0)
 for(j = 1; (roteiro[i][j] > 0)||(roteiro[i][j-1]); j++)
 cust = cust + dist[roteiro[i][j-1]][roteiro[i][j]] * (4 - camrota[i]);
 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 cust = cust + setup[i][j] * 2 * dist[0][i] * (4 - camrota[i]);*/

 for(i = 1; i <= N; i++)
 {
 c = 0;
 n = 0;
 fretep[i] = 0.0;
 for(j = 1; roteiro[i][j] > 0; j++)
 {
 n++;
 if(custofaixa[roteiro[i][j]][camrota[i]] > c)
 {
 c = custofaixa[roteiro[i][j]][camrota[i]];
 d = delta[roteiro[i][j]][camrota[i]];
 }
 }
 if(n > 0)
 {
 cust = cust + c + (n - 1) * d;
 fretep[i] = fretep[i] + c + (n - 1) * d;
 }
 }

 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 cust = cust + setup[i][j] * custofaixa[i][j];
 return cust;
}

void saida()
{
 int i, j, n;

 FILE *arqsaida;
 char nome[100];

 sprintf(nome, "c:/TF/saida.txt");
 arqsaida = fopen(nome,"w");

xxxv

 for(i = 1; i <= N; i++)
 {
 if(broteiro[i][1] > 0)
 {
 for(j = 0; j <= 5; j++)
 fprintf(arqsaida, "%d\n", broteiro[i][j]);
 fprintf(arqsaida, "\n");
 }
 }
 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 {
 n = bsetup[i][j];
 while(n > 0)
 {
 fprintf(arqsaida, "0\n%d\n0\n0\n0\n0\n\n", i);
 n--;
 }
 }

 for(i = 1; i <= N; i++)
 fprintf(arqsaida, "0\n0\n0\n0\n0\n0\n\n");

 fclose(arqsaida);

 // gera arquivo de entrada para o AG
 sprintf(nome, "c:/TF/AG.txt");
 arqsaida = fopen(nome,"w");

 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 {
 n = bsetup[i][j];
 while(n > 0)
 {
 fprintf(arqsaida, "%d\t", j);
 fprintf(arqsaida, "%d\t0\t0\t0\n", i);
 fprintf(arqsaida, "0\t");
 fprintf(arqsaida, "%lf\t0\t0\t0\n", cap[j]);
 n--;
 }
 }

 for(i = 1; i <= N; i++)
 if(broteiro[i][1] > 0)
 {
 fprintf(arqsaida, "%d\t", bcamrota[i]);
 for(j = 1; j <= TAM; j++)
 fprintf(arqsaida, "%d\t", broteiro[i][j]);
 fprintf(arqsaida, "\n");
 fprintf(arqsaida, "0\t");
 for(j = 1; j <= TAM; j++)
 fprintf(arqsaida, "%lf\t", bdem[broteiro[i][j]]);

xxxvi

 fprintf(arqsaida, "\n");
 }

 for(i = 1; i <= 2*N; i++)
 fprintf(arqsaida, "0\t0\t0\t0\n");

 fclose(arqsaida);

 // gera arquivo com os caminhoes utilizados
 sprintf(nome, "c:/TF/cam.txt");
 arqsaida = fopen(nome,"w");

 for(i = 1; i <= N; i++)
 if(broteiro[i][1] > 0)
 fprintf(arqsaida, "%d\n\n\n\n\n\n\n", bcamrota[i]);

 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 {
 n = bsetup[i][j];
 while(n > 0)
 {
 fprintf(arqsaida, "%d\n\n\n\n\n\n\n", j);
 n--;
 }
 }

 for(i = 1; i <= N; i++)
 fprintf(arqsaida, "0\n\n\n\n\n\n\n");
 fclose(arqsaida);

 sprintf(nome, "c:/TF/rotas.txt");
 arqsaida = fopen(nome,"w");

 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 {
 n = bsetup[i][j];
 while(n > 0)
 {
 fprintf(arqsaida, "%d\t", j);
 fprintf(arqsaida, "%d\n", i);
 n--;
 }
 }

 for(i = 1; i <= N; i++)
 if(broteiro[i][1] > 0)
 {
 fprintf(arqsaida, "%d\t", bcamrota[i]);
 for(j = 1; j <= TAM; j++)
 if(broteiro[i][j] > 0)
 fprintf(arqsaida, "%d\t", broteiro[i][j]);
 fprintf(arqsaida, "\n");
 }

xxxvii

 fclose(arqsaida);
}

int main()
{
 int i, j, k, r, g, num, n, nn;
 int tipo, tipo2, rota, rota2, posicao, posicao2;
 int norotas[NMAX+1][3];
 int checkh, checkc;

 double peso[NMAX+1];
 double pesot;
 double ciclo[NMAX+1];
 double economia[NMAX+1][NMAX+1];

 double ciclot;
 double custo;
 double bestc;
 double cf;

 FILE *arqentrada;
 char nome[100];

 for(i = 0;i <= NMAX; i++)
 d[i] = 0.0;

 sprintf(nome, "c:/TF/Dados22-02.txt"); // dados das lojas
 arqentrada = fopen(nome,"r");
 fscanf(arqentrada, "%d", &N);
 for(i=0; i<= N; i++)
 {
 fscanf(arqentrada, "%lf", &X[i]);
 fscanf(arqentrada, "%lf", &Y[i]);
 fscanf(arqentrada, "%lf", &d[i]);
 fscanf(arqentrada, "%lf", &custofaixa[i][1]);
 fscanf(arqentrada, "%lf", &custofaixa[i][2]);
 fscanf(arqentrada, "%lf", &custofaixa[i][3]);
 fscanf(arqentrada, "%lf", &delta[i][1]);
 fscanf(arqentrada, "%lf", &delta[i][2]);
 fscanf(arqentrada, "%lf", &delta[i][3]);
 fscanf(arqentrada, "%lf", &hi[i]);
 fscanf(arqentrada, "%lf", &hf[i]);
 fscanf(arqentrada, "%d", &carreta[i]);
 }
 fclose (arqentrada);

 printf("Numero ");
 scanf("%d", &num);
 srand(num);

 bestc = 999999999.9;

 cap[1] = 28.0;
 cap[2] = 14.0;
 cap[3] = 7.0;

xxxviii

 for(i = 0;i <= N; i++)
 for(j = 0; j <= N; j++)
 {
 dist[i][j] = 0.0;
 economia[i][j] = 0.0;
 }

 for(i = 0;i <= (N*(N-1))/2; i++)
 {
 listae[i]= 0.0;
 listai[i] = 0;
 listaj[i] = 0;
 }

 for(i = 1; i <= N; i++)
 {
 bdem[i] = 0.0;
 fretep[i] = 0.0;
 }

 printf("Calculando Distancias...\n");
 calcdistxy();
 calctempop();

 printf("Calculando Economias...\n");
 /*for(i = 1;i <= N; i++) // calcula economias (distancia)
 for(j = 1; j <= N; j++)
 if(i != j)
 economia[i][j] = dist[0][i] + dist[j][0] - dist[i][j];*/

 for(i = 1;i <= N; i++) // calcula economias 2 (custo de frete)
 for(j = 1; j <= N; j++)
 if(i != j)
 {
 if(custofaixa[i][1] >= custofaixa[j][1])
 {
 economia[i][j] = custofaixa[j][1] - delta[i][1];
 }
 else
 {
 economia[i][j] = custofaixa[i][1] - delta[j][1];
 }
 }

 printf("Gerando Lista...\n");
 for(k = 1; k <= (N*(N-1)/2); k++)
 {
 for(i = 1; i <= N; i++)
 for(j = i+1; j <=N; j++)
 if(economia[i][j] > listae[k])
 {
 listai[k] = i;
 listaj[k] = j;
 listae[k] = economia[i][j];

xxxix

 }
 economia[listai[k]][listaj[k]] = 0.0;
 }

 for(g = 1; g <= GER; g++)
 {

 for(i = 0; i <= N; i++)
 {
 peso[i] = 0.0;
 ciclo[i] = 0.0;
 horario[i] = 0.0;
 }

 tipo = 0;
 tipo2 = 0;
 rota = 0;
 rota2 = 0;
 posicao = 0;
 posicao2 = 0;
 checkc = 0;
 checkh = 0;

 for(i = 0; i <= N; i++)
 for(j = 0; j <= N+1; j++)
 roteiro[i][j] = 0;

 for(i = 1; i <= N; i++)
 dem[i] = d[i];

 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 setup[i][j] = 0;

 if(g == 1)
 entregasini();
 else
 entregasini();

 for(i = 0; i <= N; i++)
 for(j = 0; j <= 3; j++)
 norotas[i][j] = 0;

 r = 1;
 for(k = 1; k <= (N*(N-1)/2); k++)
 {
 if((randomico(1) < PH) || (g == 1))
 {

 if((norotas[listai[k]][0] >= 2) && (norotas[listaj[k]][0] >= 2))
 {
 tipo = norotas[listai[k]][0];
 rota = norotas[listai[k]][1];
 posicao = norotas[listai[k]][2];
 tipo2 = norotas[listaj[k]][0];

xl

 rota2 = norotas[listaj[k]][1];
 posicao2 = norotas[listaj[k]][2];

 if(tipo == 3) //se o primeiro é final de rota
 {
 for(i = 1; roteiro[rota][i] > 0; i++)
 roteiro[0][i] = roteiro[rota][i];
 if(tipo2 == 2)
 for(i = 1; roteiro[rota2][i] > 0; i++)
 roteiro[0][posicao + i] = roteiro[rota2][i];
 if(tipo2 == 3)
 {
 j = posicao + 1;
 for(i = posicao2; i >= 1; i--)
 {
 roteiro[0][j] = roteiro[rota2][i];
 j++;
 }

 }
 }
 if(tipo == 2) //se o primeiro é início de rota
 {
 if(tipo2 == 2)
 {
 j = 1;
 for(i = contno(rota2); i >= 1; i--)
 {
 roteiro[0][j] = roteiro[rota2][i];
 j++;
 }
 for(i = 1; roteiro[rota][i] > 0; i++)
 roteiro[0][j+i-1] = roteiro[rota][i];
 }
 if(tipo2 == 3)
 {
 for(i = 1; roteiro[rota2][i] > 0; i++)
 roteiro[0][i] = roteiro[rota2][i];
 for(i = 1; roteiro[rota][i] > 0; i++)
 roteiro[0][posicao2 + i] = roteiro[rota][i];
 }
 }
 pesot = calcpeso(0);
 ciclot = calcciclo(0);
 calchorario(0);
 checkh = 1;
 for(i = 1; roteiro[0][i] > 0; i++)
 if(horario[roteiro[0][i]] > hf[roteiro[0][i]])
 checkh = 0;

 checkc = checkpeso(0);

 if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
 {

xli

 for(i = 1; roteiro[0][i] > 0; i++)
 {
 roteiro[rota][i] = roteiro[0][i];
 norotas[roteiro[rota][i]][2] = i;
 norotas[roteiro[rota][i]][1] = rota;
 norotas[roteiro[rota][i]][0] = 1;
 if(roteiro[0][i+1] == 0)
 norotas[roteiro[rota][i]][0] = 3;
 }
 norotas[roteiro[rota][1]][0] = 2;

 for(i = 1; roteiro[rota2][i] > 0; i++)
 roteiro[rota2][i] = 0;

 //peso[rota] = pesot;
 ciclo[rota]= ciclot;
 }
 for(i = 1;i <= N+1; i++) //apaga roteiro temporário
 roteiro[0][i] = 0;
 }
 else if(norotas[listai[k]][0] >= 2 && norotas[listaj[k]][0] == 0)
 {
 tipo = norotas[listai[k]][0];
 rota = norotas[listai[k]][1];
 posicao = norotas[listai[k]][2];

 if(tipo == 3)
 {
 roteiro[rota][posicao+1] = listaj[k];
 pesot = calcpeso(rota);
 ciclot = calcciclo(rota);
 calchorario(rota);
 checkh = 1;
 for(i = 1; roteiro[rota][i] > 0; i++)
 if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])
 checkh = 0;

 checkc = checkpeso(rota);
 if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
 {
 norotas[listaj[k]][0] = 3;
 norotas[listaj[k]][1] = rota;
 norotas[listaj[k]][2] = posicao + 1;
 norotas[listai[k]][0] = 1;
 //peso[rota] = pesot;
 ciclo[rota]= ciclot;
 }
 else
 roteiro[rota][posicao + 1] = 0;
 }
 if(tipo == 2)
 {
 for(i = N; i >= 2; i--)
 roteiro[rota][i] = roteiro[rota][i-1];
 roteiro[rota][1] = listaj[k];

xlii

 pesot = calcpeso(rota);
 ciclot = calcciclo(rota);
 calchorario(rota);
 checkh = 1;
 for(i = 1; roteiro[rota][i] > 0; i++)
 if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])
 checkh = 0;

 checkc = checkpeso(rota);

 if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
 {
 norotas[listaj[k]][0] = 2;
 norotas[listaj[k]][1] = rota;
 norotas[listaj[k]][2] = 1;
 norotas[listai[k]][0] = 1;
 for(i = 2; roteiro[rota][i] > 0; i++)
 norotas[roteiro[rota][i]][2]++;
 ciclo[rota] = ciclot;
 }
 else
 for(i = 1; roteiro[rota][i] > 0; i++)
 roteiro[rota][i] = roteiro[rota][i+1];
 }
 }
 else if(norotas[listaj[k]][0] >= 2 && norotas[listai[k]][0] == 0)
 {
 tipo = norotas[listaj[k]][0];
 rota = norotas[listaj[k]][1];
 posicao = norotas[listaj[k]][2];

 if(tipo == 3)
 {
 roteiro[rota][posicao + 1] = listai[k];
 pesot = calcpeso(rota);
 ciclot = calcciclo(rota);
 calchorario(rota);
 checkh = 1;
 for(i = 1; roteiro[rota][i] > 0; i++)
 if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])
 checkh = 0;

 checkc = checkpeso(rota);

 if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
 {

 norotas[listai[k]][0] = 3;
 norotas[listai[k]][1] = rota;
 norotas[listai[k]][2] = posicao + 1;
 norotas[listaj[k]][0] = 1;
 //peso[rota] = pesot;
 ciclo[rota]= ciclot;

xliii

 }
 else
 roteiro[rota][posicao + 1] = 0;
 }
 if(tipo == 2)
 {
 for(i = N; i >= 2; i--)
 roteiro[rota][i] = roteiro[rota][i-1];
 roteiro[rota][1] = listai[k];
 pesot = calcpeso(rota);
 ciclot = calcciclo(rota);
 calchorario(rota);
 checkh = 1;
 for(i = 1; roteiro[rota][i] > 0; i++)
 if(horario[roteiro[rota][i]] > hf[roteiro[rota][i]])
 checkh = 0;

 checkc = checkpeso(rota);

 if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
 {
 norotas[listai[k]][0] = 2;
 norotas[listai[k]][1] = rota;
 norotas[listai[k]][2] = 1;
 norotas[listaj[k]][0] = 1;
 for(i = 2; roteiro[rota][i] > 0; i++)
 norotas[roteiro[rota][i]][2]++;
 //peso[rota] = pesot;
 ciclo[rota] = ciclot;
 }
 else
 for(i = 1; roteiro[rota][i] > 0; i++)
 roteiro[rota][i] = roteiro[rota][i+1];
 }
 }
 else if((norotas[listai[k]][0] == 0)&&(norotas[listaj[k]][0] == 0))
 {
 roteiro[0][1] = listai[k];
 roteiro[0][2] = listaj[k];
 pesot = calcpeso(0);
 ciclot = calcciclo(0);
 calchorario(0);

 checkh = 1;
 for(i = 1; roteiro[0][i] > 0; i++)
 if(horario[roteiro[0][i]] > hf[roteiro[0][i]])
 checkh = 0;

 checkc = checkpeso(0);

 if((checkc == 1)&&(ciclot <= T)&&(checkh == 1))
 {
 norotas[listai[k]][0] = 2;
 norotas[listaj[k]][0] = 3;
 norotas[listai[k]][1] = r;

xliv

 norotas[listaj[k]][1] = r;
 norotas[listai[k]][2] = 1;
 norotas[listaj[k]][2] = 2;
 roteiro[r][1] = roteiro[0][1];
 roteiro[r][2] = roteiro[0][2];
 ciclo[r] = ciclot;
 r++;
 }
 roteiro[0][1] = 0;
 roteiro[0][2] = 0;
 }
 }
 }
 for(i = 1; i <= N-1; i++) // elimina roteiros vazios
 if(roteiro[i][1] == 0)
 {
 for(j = i+1; ((roteiro[j][1] == 0)&&(j < N)); j++)
 j = j;
 for(k = 1; roteiro[j][k] > 0; k++)
 {
 roteiro[i][k] = roteiro[j][k];
 roteiro[j][k] = 0;
 peso[i] = peso[j];
 ciclo[i] = ciclo[j];
 }
 }

 for(i = 1; roteiro[i][1] > 0; i++)
 peso[i] = calcpeso(i);

 r = 0;
 for(i = 1; i <= N; i++)
 if(roteiro[i][1] > 0) // conta o numero de rotas
 r++;

 for(i = 1; i <= N; i++) //cria as rotas individuais
 if(norotas[i][0] == 0)
 {
 roteiro[r+1][1] = i;
 peso[r+1] = calcpeso(r+1);
 ciclo[r+1] = calcciclo(r+1);
 r++;
 }

 for(i = 1; i <= N; i++) //atribui os caminhoes adequados a cada rota
 {
 if(roteiro[i][1] > 0)
 {
 camrota[i] = 1;
 if(peso[i] <= cap[2])
 camrota[i] = 2;
 if(peso[i] <= cap[3])
 camrota[i] = 3;
 }
 }

xlv

 custo = calccusto();

 if(custo < bestc)
 {
 bestc = custo;
 for(i = 1; i <= N; i++)
 {
 for(j = 1; j <= TIPO; j++)
 bsetup[i][j] = setup[i][j];
 bcamrota[i] = camrota[i];
 for(j = 0; j <= N; j++)
 broteiro[i][j] = roteiro[i][j];
 bdem[i] = dem[i];
 bfretep[i] = fretep[i];
 }
 }

 printf("G = %d\tTotal: %lf\n", g, bestc);

 }
 saida();

 for(i = 1; i <= N; i++) // imprime os roteiros formados
 {
 if(broteiro[i][1] > 0)
 {
 printf("R%d - 0 ", i);
 for(j = 1; (broteiro[i][j] > 0 || broteiro[i][j-1] > 0) ; j++)
 printf("%d ", broteiro[i][j]);
 printf("\n");
 }
 }
 cf = 0;
 for(i = 1; i <= N; i++)
 for(j = 1; j <= TIPO; j++)
 {
 n = bsetup[i][j];
 while(n > 0)
 {
 printf("%d, F = %lf\n", i, custofaixa[i][j]);
 n--;
 }
 }

 for(i = 1; i <= N; i++)
 for(j = 1; j <= N+1; j++)
 roteiro[i][j] = broteiro[i][j];

 for(i = 1; broteiro[i][1] > 0; i++)
 printf("R%d - T = %d, P = %lf, T = %lf, D = %lf, F = %lf\n", i, bcamrota[i],
calcpesof(i), calcciclo(i), calcdist(i), bfretep[i]);
 printf("Total: %lf\n", bestc);
 return 0;
}

